
Web-based Intelligent Tutors Derived from Lecture-based Courses

A Dissertation Proposal Presented

by

Mia K. Stern

December 5, 1997

Abstract

In this proposal, we present the work on an intelligent tutoring system for the World Wide

Web. In this work, we will focus on the research issues of domain representation, student

modeling, reducing network delays, and code reusability. The framework for this research is

MANIC (Multimedia Asynchronous Networked Individualized Courseware).

MANIC courses originate from existing video-taped courses. These courses provide an initial

set of material, including audio, video, and class notes. However, the course structure is initially

linear, which is not suitable for a WWW presentation. Therefore, we will investigate presenting

the content non-linearly. Furthermore, the original class material is directed towards the entire

class, and does not take into account the learning di�erences in individual learners. As a result,

we must devise a student model that tracks each learner and adjust the course for that learner's

needs.

We plan on using these student models to extend the currently existing course material in

three ways: (1) guiding students through the material on their optimal path, (2) altering the

content of the course material students see, based on their student models, and (3) generating

quizzes most appropriate for the students' levels of ability and learning. Additionally, we propose

to investigate how these student models can be used to prefetch parts of the course material,

reducing the delays seen by students.

Furthermore, creating intelligent tutoring systems is a costly endeavor, both in time and in

money. We would prefer to develop shells in which more tutors could be build. Therefore, in

creating one intelligent tutoring system for the WWW, we hope to develop general techniques

that can be used for other courses.

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Bene�ts o�ered by a networked system . 2

1.1.2 Obstacles of a Web-based system . 3

1.1.3 Bene�ts o�ered by an intelligent tutoring system 3

1.2 Goals and Contributions . 4

1.2.1 Network latency . 4

1.2.2 Dynamic student modeling . 4

1.2.3 Overcoming Web-imposed di�culties . 5

1.2.4 Knowledge representation . 6

1.2.5 Adaptive and generative course material . 6

1.2.6 Code reusability . 7

2 Related work 7

2.1 Distance learning systems . 7

2.2 WWW tutors . 8

2.3 Web-based user modeling . 9

2.4 Caching . 9

2.5 Prefetching . 10

3 Student's interactions with a MANIC course 12

4 Current system architecture 15

4.1 Client software . 15

4.2 Proxy . 16

4.3 HTTP server . 17

4.4 Port server . 17

4.5 Student model server . 18

5 Proposed Implementation 19

5.1 Domain Organization . 19

5.2 The student model . 23

5.2.1 The basic student model . 23

5.2.2 Keeping track of the student's past performance 24

5.2.3 Using pretests . 24

5.3 Guiding the student through the material . 24

5.3.1 Suggesting topics . 25

5.3.2 Determining which content objects to present 27

5.4 Quizzing the student . 28

5.4.1 Types of questions . 28

5.4.2 Creating a quiz . 28

5.4.3 Grading a quiz . 29

5.5 Prefetching . 29

5.5.1 What to prefetch . 30

5.5.2 Server Based Architecture . 31

5.5.3 Proxy Based Architecture . 33

i

5.5.4 Hybrid Architecture . 35

5.5.5 A comparison of the architectures . 35

6 Proposed validation 35

6.1 Validating the student model . 36

6.2 Validating the prefetching . 36

6.3 Reusability . 37

7 Timeline 37

8 Conclusions 38

ii

List of Figures

1 A screen shot of MANIC course material. 13

2 The architecture for the MANIC project . 15

3 The content object structure for a generic topic . 22

4 The topic list as it currently exists in MANIC . 26

5 The proposed topic list in MANIC . 27

iii

List of Tables

1 The three possible architectures . 30

iv

1 Introduction

The purpose of this thesis is to advance the theory, development, deployment, and assessment

of Web-based intelligent instructional systems technology. We focus on the research issues in

computer networks and intelligent user modeling. The computer networks issues include reducing

network delays and monitoring network behavior. The intelligent user modeling research questions

include knowledge representation, dynamic construction of a student model, and using this model

to dynamically generate course material. We are also interested in exploring the possible reusability

of such an intelligent tutoring system framework. This work will be presented in the context of

MANIC (Multimedia Asynchronous Networked Individualized Courseware), a shell for Web-based

intelligent tutors, whose course content originates from existing video-taped courses [47][48].

Many Web based educational systems do not customize the material to meet individual student

needs. These systems are usually static and do not reason about the student to personalize the

interaction. On the other hand, MANIC, since it is an intelligent tutoring system delivered over the

Web, can customize the learning experience for each student. MANIC synchronizes audio/video

and HTML slides as well as interactive quizzes. With the MANIC project, existing technologies

(such as WWW browsers and plugins, like RealPlayer) are augmented with specialized WWW

servers and proxies to provide a more individualized learning experience.

Although the audio/video and slides for a MANIC course are taken from existing video courses,

MANIC courses are not simply direct translations of those video courses. By designing the course

to be delivered over the WWW, it is considerably more interactive, thus allowing students to take

more control over their learning.

The domain for the �rst course developed with MANIC is UNIX network programming. The

content for this course was taken from an existing six hour course taught by Jim Kurose through

the National Technical University. This course was used as part of a 1-credit course taught during

the Fall of 1996. The second MANIC based course was based on Computer Science 453/653:

Computer Networks. This course was taught in the Spring of 1997, with 150 registered students.

We are currently converting three additional courses to be used with MANIC, including a course

on art history.

Three main research topics will be explored in this thesis. The �rst involves building an intelligent

multimedia tutor on the World Wide Web. We are restricting the tutoring system to be courses

composed of HTML slides, audio, video, and animations.

We are concentrating on these aspects since the goal of the MANIC project is to be able to

\replace" traditional lectures by putting them on-line. One advantage of using MANIC for learning

the lecture material over the traditional lecture experience is the availability of an on-line course.

Students can access the material at any time and from anywhere. Another advantage is the student

can study at his own pace, choosing to review material multiple times if necessary, without altering

the pace for the rest of the students. Furthermore, the instruction can be individualized for each

student, using MANIC, which it cannot be in a full lecture course. However, lectures themselves

have advantages. The primary one is the ability to ask questions of the instructor. But as the

goal of MANIC is to replace traditional lectures, and not to replace the instructor, students will

still be able to meet with a human instructor during regularly scheduled lecture times to ask those

questions. The lecture time would be available for more constructive learning.

Essentially any existing video courses can be converted with the MANIC system, in which case

the domain of the course begins completely linear in nature and the course content is directed

towards all the in-class students, who may learn at di�erent speeds. We intend to make the learning

experience more enjoyable for students, by adjusting the domain which should not be linear, and

providing multiple ways for presenting the material. There are four questions that we will explore

1

while developing intelligent tutoring in the MANIC context:

� How should the domain be organized?

� What kind of student model can we have in these systems?

� How can the student model be used to a�ect the way material is presented to the student?

� How can the student model be used for testing the student?

The second part of the project involves reducing the network delays experienced by students.

Because we are using various forms of multimedia, there will be some di�culties providing the

highest quality of service to all users. As a partial solution to this problem, we will investigate a

mechanism in which part of the material can be prefetched to the client's site before it is explicitly

requested. If this prefetching is accurate, the delays seen by the user will be considerably smaller,

if not non-existent. Within the MANIC system, we will investigate how to make the prefetching

accurate by using the student models to best predict what to prefetch.

The last part of the project involves demonstrating the reusability of the MANIC software. Since

creating instructional material has proved to be so di�cult and time consuming, one of the goals of

this project is to develop general student modeling techniques that can be used with any video-taped

course being converted to the Web.

1.1 Motivation

Web-based training systems provide a good mechanism for distance learning but the technology is

currently poorly understood. The Web makes interactivity di�cult and provides a limited view of

the student's activity. It is not possible to be aware of every action the student takes. For example,

in a standalone ITS, if the tutor wants to track all answers the student gives, it can do that by

responding as soon as an answer is given, before even an \ok" button is clicked. However, on the

Web, the student must submit his answer before it can be evaluted by the tutor.

Other obstacles of a Web-based system include the latency experienced on the Web, the lack of

customization of material for each user, and the inability to monitor student progress and reason

about responses. In this section, we discuss some of the bene�ts of Web-based teaching systems,

as well as some of their problems.

1.1.1 Bene�ts o�ered by a networked system

Distance learning is becoming more and more popular and prevalent and delivering learning systems

over a computer network is more practical than distributing the software to all sites via CD-ROM.

Speci�cally, each learning site will not be required to have copies of the system for on-demand

usage and will not require users to wait for the system to be delivered. Network-based systems are

available at any time and at any place around the globe.

Because educational material can change rather frequently, using CD-ROMs for instruction is

not cost-e�ective, since it requires redistributing the CD-ROMs every time the material changes.

With a network-based system, instructional designers can continuously upgrade and augment the

material without any users being explicitly made aware of such changes. Therefore, networked

educational systems allow for more
exibility and extensibility than traditional, static CD-ROMs.

2

1.1.2 Obstacles of a Web-based system

However, there are some di�culties with Web-based delivery of course content. First, Web sites

may be unavailable, either temporarily or permanently. Second, multimedia can be delivered with a

greater quality of service (i.e. greater bandwidth) using a CD-ROM than using the Web. But even

with these disadvantages, the
exibility of Web-based instruction makes it a worthwhile endeavor.

Furthermore, many users claim, when using the Web, that information retrieval is too slow. One

way to reduce these latencies is to prefetch, or download to the client ahead of time, material to

the user. If the prefetching is accurate, the delays at the client side will be minimal.

However, most prefetching work, such as that in [38], involves using the global Web as the test

bed. On the other hand, the MANIC system is a closed environment, providing us a limited number

of documents to prefetch. We can therefore consider reducing network latencies in a controlled

environment, before approaching the problem of the global Web community.

Furthermore, this project provides a way to examine the issues in networked multimedia (e.g.

quality of service guarantees and admission control) in a setting in which users will provide actual

data on how the algorithms should function. Many software studies on these network issues are

based on simulation; our system (student model and prefetching schemes) can be based on data

from actual users. We can examine the way students use the material, and design a student model

from that data.

1.1.3 Bene�ts o�ered by an intelligent tutoring system

It is becoming very evident that more e�cient training systems are needed by all organizations

undergoing rapid technological change. Lecture-style training and traditional instructional systems

are unable to keep up with the number of people who require training. New technologies are needed

to reduce the increasing cost and burden of education and training.

On the other hand, e�ective multimedia intelligent systems often include substantial multimedia

components, making these systems memory and computer intensive. Because educational compu-

tational resources are typically limited, cross-platform delivery is essential. Thus we again look to

a Web-based solution.

Properly designed computer-based tutoring systems have proven highly e�ective as learning aides.

Intelligent tutoring systems have been shown to teach twice as quickly as traditional classroom

methods [45] and to produce increased skill retention with fewer mistakes [29].

An intelligent tutoring system consists of �ve components: student model, pedagogical module,

domain knowledge, communications module, and expert model [2]. In MANIC, we are concentrating

on how student modeling can be done most e�ectively on the Web, and how this student model

can then be used to a�ect the pedagogical decisions.

Computer-based training systems are extremely e�ective in training because they can be adapted

to an individual student's needs and idiosyncrasies, thus increasing motivation and signi�cantly

improving learning by tracking student abilities and altering instruction accordingly. Individualized

instruction has proven extremely useful in improving the education of students [6]. Intelligent

tutoring systems can provide this individualized instruction that cannot be achieved in a lecture-

style class.

Intelligent tutoring systems have been used to teach a variety of skills, from Lisp programming

[1] to treating heart attack patients [20]. For training people in technical �elds, educational systems

have been developed that provide realistic working environments [28]. These systems include sim-

ulations of complex and dangerous machinery, thus providing opportunities to learn that otherwise

would not be available.

3

Although intelligent tutoring systems have proven highly e�ective for teaching, there are very

few systems available over the WWW. The lack of instantaneous interaction between the tutor and

the student has been a hindrance to the development of truly intelligent Web-based tutors.

1.2 Goals and Contributions

The research goals for this work fall into �ve main categories. In this section, we discuss the research

focus of the MANIC system and the unique contributions of this work.

1.2.1 Network latency

Many users on the World Wide Web complain of latencies experienced due to downloading a new

page [38]. One way to reduce these delays is to prefetch the new page before it is explicitly requested.

In a completely linear setting, this would not be a problem, since the next page is known. However,

with a MANIC course, as with most Web settings, students are not limited to a linear traversal of

the material.

One option is to prefetch large sections of the course, or even the entire course, ahead of time.

This prefetched material would be stored on the client's machine in a temporary cache for easy

access. However, in reality, we cannot do this. There is never in�nite cache space nor network

bandwidth. Thus we cannot prefetch the entire course, nor can we always prefetch more data than

we expect the student will use. For these reasons, we need to selectively and intelligently prefetch

only small portions of the course.

To accomplish this task, we use the student model to predict what actions the student will take

and prefetch that part of the material. This prefetching, if accurate, can reduce the delays seen

by the user, since the requested information will be available before it is requested. However,

prefetching that is not accurate will waste network bandwidth and cache space, by storing pages

not requested by the user. One contribution of this work, then, is to identify what can and should

be prefetched, based on the student model.

Another contribution is to decide when not to prefetch. Inaccurate prefetching will reduce the

amount of bandwidth and processing available for real-time requests. Real-time requests should

have priority over inaccurate prefetching. We will investigate how to use both the student model

and empirical data collected by the tutor to decide when and how to slow and/or terminate the

prefetching.

A further di�culty with MANIC prefetching is the dynamic course content generation. Since

there are no static slides for users to see, it is not possible to prefetch far into the future.

1.2.2 Dynamic student modeling

One of the research goals of this work is to determine the type of student model that can be

employed in the MANIC system. Student modeling is a di�cult subject, in standalone tutors as

well as web-based tutors. However, in order to have an intelligent tutoring system, the system must

maintain a student model.

In MANIC, we model all actions the students take, even if they use the history list or the

browser's navigation buttons. We are able to do this since all of our web pages are common

gateway interface (CGI) scripts, which must be reloaded each time. Therefore, the HTTP server

is contacted whenever the student loads a page. In section 4.3, we discuss exactly how the actions

can be tracked.

In intelligent tutoring systems, quizzes provide the tutor with the most useful, direct information

about the student's knowledge. However, in MANIC, the quizzes are optional, since some people

4

may use a MANIC course without being registered. The intelligent features should still be available

in this case, even when quizzes are not required. However, quizzing provides the tutor with a lot

of information about the student's knowledge, so it would be bene�cial, from a user modeling

standpoint, for students to take quizzes. Quizzes generated by the tutor allow it to have a degree

of expectation for student's answers. The questions are directed to test knowledge about which the

tutor is lacking su�cient information.

Since quizzes in MANIC are optional, we cannot base our student model on being able to collect

these data. The main interactions with students are through their viewing slides and listening to

audio. Thus, we must devise a student model that uses this information as its basis for judgment.

This is very tricky, though. It is not always possible to accurately judge a student's knowledge

based on the slides he has seen and the audio he has heard (as has been discussed in [10]). If a

student views slides 15 through 20, does he su�ciently know the material? What if he starts on

slide 15 and skips the �rst 14 slides? Should the tutor suggest he go back to that initial material?

Also, if a student does not listen to the associated audio, does he know the material as well as

someone who has (we are assuming \no")?

For all of these reasons, designing a student model to use in the MANIC framework is an open

research question that we address in this work. We will then explore how to use the model for

individualizing instruction and for reducing network delays.

1.2.3 Overcoming Web-imposed di�culties

As we have mentioned, the Web reduces the level of interactivity in an intelligent tutoring system.

In MANIC, we are examining how to overcome some of the di�culties imposed by this restriction.

The �rst problem we must face is being able to record the student actions that make up the

student model. This is problematic on the WWW, since the HTTP protocol [4] is stateless, which

means there is no long term connection between the client and the server. Every time the client

makes a request of the server, a new connection must be established. Thus the server cannot

maintain information about the client, since the communication, from its perspective, is one time

only.

Many solutions to the statelessness problem have been proposed and implemented, so that is not

the focus of this discussion. Our solution, using cookies [24], is presented in section 4.3. We have

chosen cookies because they are easy to implement and are a very simple mechanism. However,

cookies have one severe drawback. A student can choose not to accept the cookies by turning on

an option within his Web browser. With this option on, the student can view the cookie, and elect

not to accept it. If this occurs, there is no way for MANIC to track students' actions.

Another di�culty with web-based student modeling is students do not have to use the software

as intended. In MANIC, if a student wants to jump to another part of the material, we expect and

want him to use the provided index. However, some students do not do this. Rather, they simply

change the slide number in the URL 1. By changing the slide number, the page displayed may not

be correct, since the URL also contains information about which buttons should be active (e.g.

whether the \next" button is enabled). Only if the index or navigational buttons are used can the

slide be accurately displayed.

Furthermore, even though we have provided navigational buttons, students do not have to use

them. Web browsers have their own \back" buttons and history lists that students can use to

traverse the material. If students do not use our buttons, the audio playback does not stop (it

does when the MANIC buttons are used). Since the audio is still playing, the slide will change

when a synchronization point is reached. However, the student may not want the slide to change.

1Each slide in the initial version of MANIC had a number, corresponding to where it �t within the lecture course.

5

Thus using the web browser's navigation buttons can lead to unexpected behavior from the user's

perspective.

Another problem faced in the MANIC system is the use of audio. We have provided a \stop"

button to terminate the play back of the audio. When students press this button, the tutor knows

how long the audio has been playing, which it adds to the student model. However, many students

use the RealAudio controls to stop the audio. There is no way to inform the tutor when the audio

stops if this method is used. However, this problem is being �xed in the next version of MANIC.

Therefore, when designing web intelligent tutoring systems, it is not possible to assume that

students will use the software as it was designed. They will always �nd a way around the interface

[].

1.2.4 Knowledge representation

The goal of this work is to be able to convert existing courses to be standalone courses on the

WWW. The courses that we are converting start o� completely linear, since they are derived from

linear lectures. However, if MANIC is used as the primary method of providing instruction, and

lectures are not necessary, there is no reason to adhere to the linear nature of the existing course.

One of the contributions of this work is being able to begin with lectures, but represent the domain

in such a way as to provide a non-linear traversal of initially linear material. We therefore hope

to develop a methodology for converting lecture based courses to be on-line, making the process

easier for other instructors who would like to deploy an intelligent MANIC course.

1.2.5 Adaptive and generative course material

Another contribution of this work is using the student model to individualize the course material

for each student. In lecture-based courses, there are many students, each with a di�erent level of

ability and knowledge. The instructor cannot individualize the teaching for each student in the

class. Therefore, the instruction may be too slow for some students and too fast for others. This is

illustrated explicitly in the course that we are working with, since both graduate and undergraduate

students are enrolled.

We are developing alternate ways of presenting slides and exams. We must now use the student

model to choose the correct material. This involves changing the course content (the slide material

and the progression through the topics) as well as providing quizzes appropriate for each student.

The content of the slides the student sees should be detailed enough to provide all the important

information, but not be too detailed to provide unnecessary information. We must therefore develop

methods in which to decide how slide content can be constructed accurately.

Furthermore, since the domain of a MANIC course is not linear, we must develop techniques

to help guide students through the course material in an e�ective way, to prevent the \lost in

hyperspace" problem [19]. We use the student model and a semantic network of course content

to help with this process. The student is not forced to learn the topics the tutor chooses. Rather

the student is presented with suggestions from the tutor, and he can choose to either take those

suggestions or to ignore them.

Finally, students are given the opportunity to take quizzes to test their skills. These quizzes

should test the correct topics and be at the correct level of di�culty. The quizzes are constructed

dynamically, based on the student model, which considers both of these factors.

6

1.2.6 Code reusability

Developing intelligent tutoring systems is a long and costly process. Therefore, one of the goals of

this work is to develop techniques that do not apply speci�cally to one course, but to many domains.

Any domain in which lectures are a main form of instruction can be taught using MANIC. The

goal, though, is not to develop general instructional methods. That problem is too big, and will

not be addressed in this work.

However, an approachable goal is to convert any existing video-taped course to be delivered via

the Web. The domain organization and student modeling is not speci�c to any particular domain.

The techniques that we will develop can be applied both to computer networks and art history. The

only requirement for using MANIC to develop on-line intelligent courseware is that the material

must include lecturing with slides and audio/video as the basic method for teaching.

2 Related work

In this section, we discuss research that is closely related to the work presented in this proposal.

In particular, we describe other WWW educational systems and other caching and prefetching

systems.

2.1 Distance learning systems

Distance learning is quickly becoming a very popular method of teaching and learning. These

systems come in two varieties: synchronous and asynchronous. With synchronous systems, all

participants must use the system simultaneously, while with asynchronous systems, this requirement

is lifted [33]. As a consequence, synchronous systems allow for more interactivity amongst the users

while asynchronous systems allow for a more self-paced approach to learning.

Many synchronous systems revolve around a video conferencing metaphor. These systems are

similar to traditional lecture courses, with the exception that the participants are geographically

dispersed. Clearly the limitations for such systems are the current video conferencing technology

and the lecture nature of the interactions. Some examples of these systems can be found in [23]

and [40].

Other synchronous distance learning systems allow users to work collaboratively, which allows for

much more student interaction. One such system, Belvedere [50], allows students to construct scien-

ti�c arguments collaboratively. Another system, The Electronic Classroom [21], provides students

with a shared screen on which they can \paint". The connections are maintained using standard

telephone lines and modems. The Telemethea system [7] allows a tutor and a trainee to have audio

communication over the network as well as to jointly edit text documents and still images.

Asynchronous systems, as we have noted, do not require that all students participate concurrently.

Some of these systems, such as that described in [41], are designed to be repositories of course

material and are strictly text based. The material in the system in [41] is used as a supplement

to an already existing lecture course. Other systems, such as that in [43], allow for asynchronous

collaboration. This di�ers from the synchronous collaboration work we have just discussed in that,

while students work collaboratively, the participants do not have a prearranged work time.

The MANIC system is an asynchronous system, so students can access the material at their

convenience. However, adding synchronous support, such as discussion sessions, would provide

more support for the student's learning experience.

7

2.2 WWW tutors

Very few tutors have been deployed using the WWW. Most of those that do exist have not been

developed or deployed completely. In this section, we discuss these systems, as well as indicate

their similarities to our system.

Most web-based educational systems use quizzes implemented with HTML forms and common

gateway interface (CGI) programs to determine a student's knowledge. The results of these forms

are then used to update the student model. This is similar to traditional intelligent tutoring systems

in that they are question/answer based systems.

One such system is designed to teach users about the road regulations in Quebec [36]. This

system uses a curriculum component, a planner, and a tutor to present material to the student.

Automatically generated tests are used to capture the student's abilities and the results of these

tests are used to construct the student model. The system dynamically decides what pedagogical

resource (problems, critiques, simulations) should be presented to the student. To determine the

actions the user has taken, the History list from Netscape is perused.

Another WWW-ITS is ELM-ART [14][52]. This system teaches Lisp programming by providing

an intelligent interactive integrated textbook. The examples given to the student are those that

are most relevant during problem solving. Furthermore, when a page is displayed that includes a

problem, links to the course material are included that correspond with that problem. The tutor

also suggests the material most appropriate for the student. But if the student attempts material

for which he is not quite ready, the tutor will provide prerequisite links for him to explore, if he

so chooses. However, the system in only text-based and the student model is rather shallow (an

overlay model [15]).

ELM-ART dynamically generates all the HTML pages based on the student model and the stored

domain knowledge. The tutor provides feedback when a student is trying to solve a problem, and

adapts the curriculum to the student's abilities. However, all of the data is still gathered through

questions and answers, which is only a small part of how MANIC gathers data.

When presenting links to the student, indicating pages in the material to examine, ELM-ART

\suggests" those pages for which a student is ready. In this way, the student can either take

the suggestions of the tutor or explore on his own direction. We would like to incorporate a

similar mechanism in the MANIC system. We feel it is not advisable to strictly direct students

through the course. Students should be given the choice of what material on which they would

like to concentrate. We have decided to take this approach since some students may use this

material as a reference guide. If this is the case, the tutor cannot know for certain the state of the

student's knowledge. If the tutor then restricts what the student sees, based on the highly faulty

student model, the student will be frustrated and will be forced to see material inappropriate for

him. ELM-ART successfully allows students to progress through the material as they choose, but

provides su�cient suggestions so they have good guidance.

A more general framework for adaptive electronic textbooks is that of InterBook [12][13]. This

system allows for incremental interface learning by adding features to the interface over time. The

student model in this system is an overlay model, giving scores to concepts if a student has read

a page and evaluating how the student has performed on quizzes concerning those concepts. This

is similar to the student model we are using in MANIC. However, we do not assume, as is done

in InterBook, that if a student reads a page he understands the associated material. Rather, we

evaluate how a student progresses through a topic, and use this information to judge a student's

knowledge. The InterBook system uses both adaptive navigation support [26] and adaptive pre-

sentation [9] techniques, as we are in MANIC. The adaptive navigation support is provided by

indicating to the student which concepts in the hyperbook should be explored and in what order.

8

The adaptive presentation is accomplished by incrementally adding interface features (such as a

glossary button) to the hyperbook layout whenever the student is ready.

Lin, Danielson, and Hergott [31] have designed an adaptive instructional system for the WWW

to teach introductory programming in C++. This system also uses true/false, multiple-choice,

matching, and short-answer questions and answers to gain information about the user. Simple

essays and procedures to be performed and evaluated are also used. The tutor includes four modules,

all of which are on the HTTP server: expert, instructor, student, and interface. The system

keeps track of the topics the student has seen, the knowledge of the student, the inferences about

misconceptions, and the inferences about possible plans the student has used to solve problems.

Currently there is no way to adopt di�erent materials and methods to deliver a question/answer

form, but that is the main focus of their research.

None of these systems that we have described use any form of multimedia. They are simply text-

based intelligent tutoring systems that have been converted to work via the WWW. Our system,

however, is being converted from a lecture course, which implies the use of video and audio. Also,

the main form of interaction in these other systems is through test questions, which provides the

system direct information on how to update the student model. Since this is not the primary way

of gathering information in the MANIC system, we cannot use the same student modeling and

curriculum planning techniques that these tutors utilize.

One WWW tutor, CALAT [34][35] does include a considerable amount of multimedia. This tutor

includes interactive simulations, exercises, and explanations. The architecture is similar to that of

MANIC since there is one intelligent tutoring server for each student taking the course. However,

it is also somewhat di�erent in that the CALAT system includes its own client for the interactive

simulations. By doing so, the user must simultaneously view multiple windows, which can become

confusing. In MANIC, we have, so far, avoided any client side development. Additionally, research

in CALAT is exploring how to reduce the download times experienced by users. The solution in

CALAT is to pipeline the data transfer and the playback. Caching is also used in a proxy to reduce

delays if a user revists a page.

2.3 Web-based user modeling

Not all user modeling on the web is designed for tutoring systems. For example, the system

described in [46] is designed to tailor web pages to users' needs. This is accomplished using new

hypertext markup language (HTML) tags that can be parsed and ignored by standard web browsers.

However, an \agent" can parse these tags, and based on the user's model, dynamically construct

the content of the page.

Electronic shopping is another area in which user modeling techniques have been attempted. In

[25], an initial design of a prototype on-line shopping mall is discussed. The goal of the system

is to provide the same kind of in-person shopping experience, but while using an on-line catalog.

To this end, the system adapts the presentation of products as well as the navigation through the

catalog.

2.4 Caching

Traditional caching (e.g. for cache memory accesses) involves storing data a user has just seen in

the hopes that the data will be needed again in the near future. Then if the data is needed, it can

be retrieved from the cache, thus reducing the latency and delays seen by the user. However, if the

data is not in the cache, it must be fetched and stored, causing something currently in the cache

to be evicted. Some typical cache replacement policies are least recently used (LRU), �rst in �rst

9

out (FIFO), and least frequently used (LFU) [51].

Caching on the WWW is similar to traditional caching in that the cache is used to store data

that has recently been seen by the user. When a client makes a request of the server, the cache is

checked �rst to see if the document is already available on the client side. If so, then the document

can be displayed without contacting the server, thus reducing the load on both the network and

the server. WWW browsers themselves have caches, but it is also possible to add additional caches

by using proxies [32]. A proxy resides between a WWW client and a WWW server. The proxy

forwards requests from the client to the server, and returns the response to the client. By using

this type of architecture, the proxy can also cache documents that are requested by clients.

The WWW o�ers us additional ways to study and implement caching. Most caching techniques

examine a single user's access patterns, such as those in operating systems. However, with so many

people accessing the same URLs, we can study how entire populations access the data and then we

can determine caching techniques for multiple users. In the usual case, WWW proxies are shared

by multiple users, and thus the cache can store documents for an entire population [32].

Caching on the WWW has been shown to be very e�ective. Some initial work by Glassman [22]

has shown that 30-50% of all requests can be serviced from the cache, and the time to service a

cache hit takes 1.5 seconds while to service a cache miss requires 6 to 9 seconds. Further work by

Pitkow and Recker [39] has shown that an LRU cache replacement policy on the WWW is very

e�ective for providing users with cached material with a hit rate of (at best) 67%.

The Harvest system [8] includes a hierarchical object cache. In this system, multiple caches are

used to store data. Cache misses are resolved by contacting neighbor and parent caches, as well as

the home machine of the requested object. Whichever site returns the fastest hit is the one from

which the object is retrieved. If all the caches miss, and the home sight is slow to respond, the

object is retrieved through the fastest parent to respond. Unlike the work in [38], these caches are

shared by all users, rather than having one cache for each client. This work di�ers from the cache

we have implemented in MANIC since it is hierarchical. In MANIC, we have only one single proxy

and cache to handle all data requests.

This caching work we have just described di�ers from the work we have been doing in MANIC

in that it does not use any intelligent techniques for adding and removing items from the cache.

2.5 Prefetching

Prefetching is clearly not a new idea in computer science. Operating systems and compilers have

been using prefetching to speed up execution for years [16]. Prefetching in both �le systems and in

the WWW are extensions of this work.

Lei and Duchamp have explored �le prefetching as a way to improve access times. The work

done in [30] indicates that by analyzing the �le access patterns of many users, it is possible to fairly

accurately predict the next �le to be accessed. In this work, the prefetcher remembers �le access

patterns, and tries to match the current pattern to a stored one. If there is a match, prefetching the

next �le is trivial. If the access pattern does not match with previous patterns, a new access pattern

is created to be used for future �le accesses with which other users' patterns can be compared. This

is similar to our work in MANIC because it is trying to analyze user's access patterns. However, we

have \pre-stored" patterns that the system tries to match, while in [30], new patterns are created

based on what previous users have done.

In [17], the authors explore whether prefetching in the context of the WWW is even a worthwhile

endeavor. Their initial study indicates that prefetching all documents that the user will see during

a session at the start of a session produces worse network characteristics than if no prefetching had

been done. The reason for this result was that the requests were no longer bursty, as they all oc-

10

curred at the beginning of the session. Thus the network was
ooded with downloading documents

all at once, instead of spread out over time. However, when the authors considered smoothing

out the prefetching, i.e. fetching only one document at a time while also using rate controlled

prefetching to further smooth the tra�c, the performance with prefetching was considerably better

than the performance without prefetching. Thus applications using prefetching can increase the

network utilization and decrease delays.

In [38], the authors discuss a technique for prefetching material on the WWWas a way to improve

latency. The prefetching in this paper is based on the fact that an HTTP server sees how an entire

population of users view the material at the web site. From this information, the server can develop

a population model and use this to predict what a new user will do in similar situations as those

already observed. The server will only suggest that the client prefetch those documents that have

a certain probability of being used in the near future. This probability is calculated from prior

accesses of the documents from the current state. For example, if document B is always accessed

after document A, then the probability that a user viewing A will view B is 1. The results of the

study indicate that this prefetching technique does indeed reduce the latency in downloading a

web document. When adding 20% more network tra�c, the access times for retrieving a document

were lower with prefetching than if the bandwidth had been increased by 20% with no prefetching.

Currently, in the MANIC system, we are not analyzing general population data to help with our

prefetching algorithm. However, this is an issue we will be researching in the future.

This work in [38] incorporates \intelligent" prefetching on the WWW. However, it is very similar

to the work in [30] on �le prefetching, in that general population patterns are explored to help the

prefetching. In the future, we will also include population models to help with our prefetching.

However, the work just described di�ers from our work in MANIC in that we are using individual

user models to aid in the prefetching decisions. We are examining each users' patterns and using

this to predict what they are likely to see next.

In [18], the authors explore individual user models to help determine which documents to prefetch.

In order to accurately prefetch, user modeling is used to determine what documents the user

will view next. Users are categorized at two extremes: a net surfer and a conservative accessor.

Conservative users will access the same pages multiple times, while net surfers will explore the

net without revisiting many documents. If users can be classi�ed as conservative, it is possible to

prefetch documents. The techniques in this paper are mostly concerned with determining whether

a user will revisit a previously seen page, which is not the focus of the prefetching prediction

in MANIC. Rather, we are concerned with where the student will go next when venturing into

unchartered territory, as well as whether the student will visit previously seen pages.

There has been some work in prefetching educational material. One such system [44] is designed

to support focused network exploration, or guided paths. Since the paths in this system are linear,

the next page in the exploration can be downloaded before it is requested by the user. The

architecture of this system employs a path server that acts between the WWW browser and the

HTTP server. This path server allows for the precaching of path material.

This work is very similar to our work, currently. The material in the MANIC system, at this

point, is fairly linear. However, in the future, we will be adding various paths that students can

explore, making the courseware non-linear. Thus we will not be able to prefetch along a singular,

predescribed path, since one will not exist.

Similar to prefetching is the work on server side speculation [5]. In this work, the server sends

additional documents to the client whenever a request is received. The additional documents sent

are those that have a su�cient probability of being viewed by the user. These probabilities have

been determined a priori by examining user access logs for a period of time. Therefore, in order

for this method to work, some learning period, where no speculation can be done, must exist. This

11

is di�erent than the work we are proposing as we are not intending to view population accesses to

see how users use the system. Rather, we are concentrating on individual user models to predict

the next documents to prefetch.

3 Student's interactions with a MANIC course

In this section, we describe how a student can currently interact with the MANIC system. We

discuss the di�erent modes in which the student can use the software as well as some of the

additional features we have built into MANIC. Figure 1 illustrates the typical screen layout for the

MANIC system.

Our goal is to encourage students to be more interactive in their learning. Therefore, we have

divided the course into \topics" (see section 5.1 for a description of the domain organization).

Students are encouraged, when learning the material for the �rst time, to explore the course in

terms of these topics.

To help with this, we have provided a way in which students can view the domain structure (both

topics and slides) of the course, which enables them to jump from topic to topic. For this reason,

we have added a table of contents, which presents the list of topics to the student. Additionally,

the course is indexed by keyword, allowing the student to jump to any slide containing the desired

word.

Students can listen to the audio associated with a given topic. If this option is chosen, the audio

for the topic is synchronized with the slides2 . This means that as the audio plays, the correct

corresponding slide is displayed to the user. Optionally, students can browse through the slides at

their own pace. This browsing is aided by the addition of \previous" and \next" buttons, which

point to the previous and next slides within the topic. Since some students may not want to hear

all of the audio for a topic, we have added a feature by which they can also listen to the audio for

a single slide at a time.

When the end of the topic is reached, the student should start a new topic. There are two options

for selecting a new topic: have the student select it or have the tutor select it. The student chooses

which option he wants. If he wants to select the topic, when the \next" button is clicked on the

last slide of the topic, the list of topics is presented. If the tutor selects the next topic, when the

\next" topic is clicked, the topic the tutor has chosen is automatically started. The student has

the option of changing who controls the topic selection process at any time, as there is a button on

each slide which, when clicked, makes the change.

When we �rst designed the on-line course, we noticed that simply having the audio and the slides

was rather dull. Therefore, when the audio is playing, the corresponding part of the text on the

slide is highlighted in red, bringing the user's attention to the relevant text. However, if the user

does not want to see this highlighting, he has the option of disabling it. The slides themselves are

still synchronized to the audio.

For ease of use, we have decided that all user controls should be contained within the browser

window. The other option is to have the navigational controls in the browser window with the

controls for audio playback in the RealAudio plugin window. One reason for this decision is the

RealAudio controls do not provide a convenient way to index into the course material. For a student

to move to another part of the material, he would have to use the timer control on the RealAudio

client (i.e. go to time 3:47 of the playback). Our table of contents provides a much more convenient

way to jump to other parts of the material. However, using the table of contents to move to another

2We use the term \slide" very loosely in this section. See section 5.1 for a more detailed discussion on what is

meant by a \slide".

12

Figure 1: A screen shot of MANIC course material.

13

part of the course does not allow students to move in a �ne-grained manner. Students may want

to fast forward through some of the audio without having to jump to the next bullet point or the

next slide. However, currently, there is no way to have this kind of �ne-grained audio control.

As we have noted, this course was converted from an already existing video course. Thus the

material was initially very linear in nature. However, the WWW provides us with an easy way to

make the presentation of educational material non-linear, and to not do so would not be taking

advantages of the power of the web. Thus, we have added \hyperlinks" within the material. These

links provide supplementary material concerning the information in the slides. These links can

either be to material within the course, or outside URLs (such as Request for Comments on various

network protocols).

We must note that when a student elects to view a hyperlink or chooses to use the table of

contents, a separate browser window is spawned. The reason for this is that students, when viewing

the supplementary material, should not lose the original context of what they were learning [49].

Students also have the opportunity to take on-line \quizzes", which are designed to test a stu-

dent's knowledge on the course material. Currently, the quizzes have three kinds of questions:

� Multiple choice

� True or False

� Short answer

The answers to the short answer questions must be only a few words, since we do not have a

natural language interface for grading the answer. Currently, we are simply doing a straight string

comparison to grade the answer.

Whenever the student elects to take a quiz, one is generated dynamically to meet his needs and

skill abilities (see section 5.4 for more information on how this is accomplished). The questions

are designed to test the student on appropriate material. In the future, the questions will also be

chosen to be at the right level of di�culty for the student, based on his model.

It should be noted that these quizzes are optional, i.e., the student does not have to take them

in order to move on to other material in the course. We have already discussed the reasons for

this policy. However, the bene�ts of having mandatory quizzes may outweigh the
exibility of not

having them. We will explore whether it is possible to construct an accurate student model without

the use of on-line quizzes.

An additional facility that we have provided for students is the ability to take notes on each

page viewed. Whenever the student views the same page in the future, his notes will appear at the

bottom of the screen. It should be noted that the notes are per page, and not per bullet point or

graphic. Furthermore, each student can only view his own notes and notes the instructor makes

available for the whole class.

Students have the option to either register for the course or not. If a student registers for the

course, then all of his actions will be recorded. For example, each slide the user views, each time the

table of contents is brought up, each time the audio is started or stopped, the action is recorded.

Not only will this help in updating the student model, but it will also help in designing the MANIC

system to be more e�cient based on students' behavior when using the system.

Non-registered students will not have their actions tracked. As a result, none of the intelligent

features in MANIC can be used for these students. These students will see the original slides, taken

straight from the lectures. Furthermore, we will develop default quizzes to give to those students,

but these quizzes may test topics the student has not yet viewed. Without any user tracking, this

is unavoidable.

14

Proxy

WWW Browser Multimedia
Plugins

Server
WWW RealAudio

Server Server
Video

Stored
Audio

Stored
Video

HTML
Slides

CGI
ScriptsStudent

Model
Server

SERVER

INTERNET

CLIENT

Logs

Server
Port

Figure 2: The architecture for the MANIC project

4 Current system architecture

There are �ve basic components to MANIC:

� Client side software (Web browser with RealPlayer plugin)

� Proxy

� HTTP server (running CGI scripts)

� Port server

� Student Model server

Figure 2 illustrates the system's architecture. In this section, we describe the details of each of

these parts.

4.1 Client software

At the client side, the student uses a web browser, such as Netscape Navigator or Microsoft Internet

Explorer. Additionally, students need the RealPlayer plugin so they can listen to the audio and

view the video associated with each HTML slide.

15

By using the RealPlayer technology, we are able to synchronize the audio playback with the

slides being displayed. RealPlayer provides for timing stipulations, such that at a certain point in

the playback, the HTTP server is contacted to send a new slide to the Web browser. For more

information on the workings of the audio/slide synchronization, see [27].

All of the software needed by a student is free and easily available. One of our goals when starting

this project was to avoid client-side development as much as possible. By using commonly available

web browsers and multimedia players, we have accomplished this goal.

4.2 Proxy

A proxy is an application that runs between a web client and server [32]. All requests from the

client are processed by the proxy before being sent to the server. Similarly, server responses are

processed by the proxy, and are then sent on to the client.

We have included a proxy as part of the architecture solely so we can do prefetching. Without

a proxy, we would have to add data to the Web browser's cache, which is not practical. Therefore,

the client must employ its own cache, which is done through a proxy.

The proxy that we are developing is a general purpose proxy, in that it will be able to work

seamlessly between any client and any server. However, when the proxy needs to contact the

MANIC HTTP server, it will behave di�erently, by adding information to the header of the request.

The proxy will also cache course material, and if the student's requested page is in the cache, then

the request does not go to the HTTP server.

Whenever the student makes a request for slide material, however, some information is sent back

to the HTTP server, for logging purposes, even if the request can be ful�lled from the proxy's

cache. This information is piggybacked with a normal HTTP request. There are three types of

requests that the proxy sends to the HTTP server. First, if the user's request can be serviced from

the cache, the proxy simply informs the HTTP server that the student has viewed the slide (so

that the student's log is updated).

Second, if the request cannot be served from the cache, the HTTP server will be asked to provide

the information, as well as update the log. The HTTP server, in response, will send prefetch and

delete advice when either of these two requests are received. This information is sent as part of

the header of the response, and the MANIC proxy knows how to parse this header to retrieve the

information. Other proxies will simply ignore the headers.

Once the header is parsed, the proxy can send the third type of request { to prefetch a document.

In this case, the HTTP server must be contacted to send the data, but the request is not recorded

in the student log, since the student has not requested the document yet. Exactly what to prefetch

is a decision made by the student model server (see Section 5.5).

The proxy is not obligated to follow the advice of the student model server concerning prefetching.

Future versions of this software will include the ability for the proxy to record information on

network congestion. Clearly, only the proxy can record this, since it knows the time a request is

sent to the HTTP server and it can record the time that request is ful�lled. If the network is too

busy, the proxy can decide not to prefetch, to avoid adding additional load to an already saturated

system.

We have omitted many implementation details concerning the proxy. The interested reader is

referred to [37] for a more detailed discussion.

16

4.3 HTTP server

This part of the system is a basic HTTP server which services HTTP requests. The server accepts

requests from the client and sends responses back. We will not describe the HTTP protocol; see [4]

for details on this protocol. However, the HTTP server has been augmented with common gateway

interface (CGI) scripts.

One role of these CGI scripts is to dynamically creates the HTML pages that the user sees. This

is done to update the highlight and buttons displayed on the page. Otherwise, we would have to

make multiple copies of the slide, one for each highlight.

HTTP is a stateless protocol, and in order to do student modeling, we need to maintain informa-

tion about the user. Traditionally, student models have been implemented in situations in which

the tutor has a stateful interaction with the user. The WWW, however, provides us with challenges

not seen in stand-alone systems, such as maintaining state while using the stateless HTTP protocol.

Our solution to this problem involves \cookies" [24] to maintain a user's state. A cookie is a

header which is set by the HTTP server and sent to a client, and contains one or more name-value

pairs. For example, a cookie may consist of \name = Mia". Whenever the client contacts the

server, the cookie is sent as part of the request. In this way, the server \knows" who the client is.

Using the previous example, whenever the \name = Mia" cookie is sent, the server knows it came

from the client whose name is Mia. Thus when the client contacts the server, the server can record

a log of what the student is doing, given that the cookie indicates who the student is.

The use of cookies has helped us track the mode in which the student is using the software, i.e.

whether the slides are highlighted and whether the audio is playing. If the user does not want to

see the highlights, a cookie is set that indicates this. When the HTTP server generates the slide,

the cookie is checked to determine if the slide should include highlighting or not.

A cookie also records if the sound is being played. As we have noted before, students have the

option of browsing the material, without using the audio. If the user is browsing, a cookie is set

to indicate this mode. This was necessary for one simple reason { the RealAudio player does not

accept signals from the Netscape viewer. And since we wanted to have all the controls in the

Netscape window (see Section 3), the RealAudio player must be told that the audio is no longer

playing. To do this, when the user clicks on any button that stops the audio, a silence �le is sent to

the RealAudio client to play, thus halting the previous playback. At this time, the user's cookie is

sent to indicate that the audio is not playing. Then when the user clicks on another control button

that would stop the audio, the silence �le need not be loaded, since the audio is not playing.

A new implementation of MANIC aims to �x this problem. This new solution involves embedding

the RealPlayer controls directly in the browser window. Java is then used as the intermediary

between the client and the server.

4.4 Port server

Once the HTTP server knows who the student is, it must make decisions about the educational

material the student should see, based on that student's model. There are a few options for which

part of the system should make these decisions. The �rst one is to allow the HTTP server to make

all of the decisions with CGI programs. However, this is not a viable option since, in order to

save time and processing, the student model decision engine should maintain the student model in

memory. If the HTTP server were to itself maintain the student model, it would have to reconstruct

the model on each request, due to the lack of state.

A second option is for the proxy to make the decisions rather than the server. We discarded this

option for several reasons. First, it is possible that users will run their own individual proxies. In

17

this case, their computers may not be powerful enough to handle the student model processing.

Second, for consistency, we want to store the student logs at a central site. Every time the student

uses the software, the log would have to be transported to the proxy, taking a possibly signi�cant

amount of time for a large log.

For these reasons, we have decided to use a separate server to control the student model. In

this way, the student's model will be maintained in a running process, and will not have to be

reconstructed on every request. Currently we spawn one student model server for each student

registered for the course. To do this, we assign a \port" to each student model server on which it

can be contacted. One way to do this is to have the HTTP server be responsible for the creation

of the student model servers. However, since HTTP is a stateless protocol, the HTTP server could

not remember which ports were in use without having to reconstruct that information. Another

option, the one we have chosen, is to use a port server that can maintain in working memory the

ports that are in use.

When a student registers for the �rst time, the HTTP server contacts the port server in order

to get a port number for this student. The port server then creates a new student model server

to listen on that port. The port assigned to the student is also written to a log, for use when the

student logs in again. With this architecture, the port server and the student model servers run on

the same machine, but they do not have to execute on the same machine as the HTTP server. With

this architecture, the same CGI scripts on an HTTP server can contact di�erent student model

servers and port servers to teach di�erent classes.

A consequence of this architecture is that once all ports are in use, there is no way to add students

to the system. Also, once a port is assigned to a student at the beginning of a session, it can only

be taken away when a timeout occurs, since there is no explicit log out procedure. Timeouts occur

when the student model server has not received any connections for one hour. At this point, the

server assumes that the student has \logged out", and thus the port can be reclaimed.

Once the student has registered, the port server takes that port out of availability, and returns

the port number to the HTTP server to transmit as part of the user's cookie. This is necessary

so the HTTP server knows which student model server to contact while the student is using the

course material.

When a student logs in after having registered, the HTTP server looks in the log �le to �nd out

the port number for the student. It then contacts the student model server on that port, sending

the name of the student. If the student model server is not servicing that student anymore or a

student model server does not exist on that port, a negative acknowledgment will be sent, and the

HTTP server will then have to contact the port server, as it does when a user �rst registers. But

if the student model server is waiting for the student who just logged in, the port server need not

be contacted.

After the student logs in (either the �rst time or repeated), the HTTP server can contact the

student model server directly, using the port number for the student (which can be retrieved from

the cookie). Thus the port server will only be responsible for keeping track of port numbers and

spawning new student model servers.

4.5 Student model server

The student model server is responsible for making decisions based on the usage patterns of each

student. As previously noted, there is one student model server for each student who is logged into

the course. When the student model server is created by the port server for a student who had

previously used the course, that student's model is reconstructed by reading the �le recording all

of his previous actions. Thus the student model is reusable between sessions.

18

Whenever a student takes any action (e.g. views a slide, takes a quiz, or views the index), that

action is reported to the student model server. A student's server then keeps track of the slides the

student has seen, the way he has been viewing the slides (e.g. playing the audio continuously or

just browsing), and the quizzes he has taken. The server is then used for all the intelligent decision

making processes, including helping the student navigate the course, deciding the content of the

slides the student sees, deciding which documents to prefetch, and creating the quizzes a student is

\quali�ed" to try. The decisions made at the student model server will be described in more detail

in Section 5. Each action the student takes and each decision the student model server makes is

recorded in the student's log �le, which more permanently records his student model.

The HTTP server is the only part of the system that initiates communication with the student

model server. The HTTP server sends the following list of commands to the student model server:

� display the welcome page for the student

� set the control of choosing the topics

� get the last slide the student has seen

� generate a new slide

� generate a quiz

� grade a quiz

� give the topic list

� save the notes written by the student

� retrieve the notes written by the student

When any of these requests are made, the student's name is sent as part of the request. In this

way, the student model server can check that the request is for the student it is serving. If not,

the HTTP receives an error code saying the request could not be ful�lled. In this case, the HTTP

server must contact the port server in order to set up a new student model server. Then the HTTP

server can contact that student model server to handle the request. If the name is correct, the

student model server simply ful�lls the request.

According to the directive sent by the HTTP server, the student model server will perform the

correct action. The results of the student model server's processing is sent back to the HTTP server

to be sent directly on to the client's Web browser.

5 Proposed Implementation

In this section we discuss the proposed futher implementation of the MANIC on-line tutoring

system.

5.1 Domain Organization

The domain will be structured in terms of \topics," with each topic consisting of a set of subtopics.

These subtopics are smaller pieces of knowledge within a topic, and are used to give us �ner grained

details for the knowledge base. We may need even further subdivisions, but for now, these two

seem su�cient.

19

The topics are arranged in a semantic network [42]. In this network, topics that have some

relationship to other topics (e.g. prerequisite topics or related topics) will be linked together, with

the value on the link the weight of this relationship. The prerequisite links are directional; they

originate from prerequisite topics. For example, if topic A points to topic B with a weight of 0.75

(on a 0 to 1 scale), then topic A is a fairly important prerequisite to topic B. The related topic

links are bidirectional.

Topics that are closely related will have higher weights on the links, while those that are not

closely related will have lower weights. The weights are determined a priori by a domain expert.

Unlike traditional tutors that determine what students see (for example, the LISP tutor [1] and

the Cardiac tutor [20]), the MANIC system does not strictly impose presentation of prerequisite

topics before a new topic is started.

Furthermore, it is often necessary to add course material, i.e., supplemental topics to the existing

material. This might be done for two reasons: (1) material is added at branch points so the course

is non-linear and (2) remedial topics are added on background information to help a student with

de�cient knowledge. In either case, a domain expert will be required to supplement the already

existing material. This supplemental material is necessary since instructors have limited time in

lectures to cover all the topics to the depth to which they would like. However, with an on-line

version of the course, there is no time limit, and the additional topics should be added.

Furthermore, we will be adding supplemental material in the form of hypertext links. Each

hypertext link will have a label indicating the type of material it contains. Some examples of the

types of hypertext links we will include are links to related material, links to prerequisite material,

and links to more detailed information. These labels are important as they provide the student

model with more information on the student's preferences and abilities, by analyzing which types

of links the student follows. For example, a student who elects to see related material, but not

necessarily material required for the class, will most likely be an enthusiastic learner.

Additionally, we will be extending the existing course by providing alternative ways to present

essentially the same material. This is necessary since in all courses, students have di�erent levels of

ability and knowledge. In a lecture-based class, the instructor cannot individualize the teaching for

each student in the class. Therefore, the instruction may be too slow for some students and too fast

for others. This is illustrated explicitly in the course that we are working with, since both graduate

and undergraduate students were enrolled. The instructor of this course (James Kurose) has noted

that there are times when graduate students are bored because something must be explained to

undergraduates. Ideally those students should be able to skip the parts they know, or just see a

review.

These multiple ways of teaching must provide the correct amount of detail for each student. Some

explanations provide more details on background information, while others assume that knowledge

is known. For example, when discussing the TCP checksum, 1's complement is discussed. One

version of the material should describe, in detail, the de�nition and functionality of 1's complement.

Another version should just use the term without de�ning it. However, in the second case, there

would be a hypertext link to the de�nition, in case the student did want to look at it after all.

There are three ways that we have considered doing this. The �rst is to have multiple versions

of slides, say three: for novice, average, and advanced students. The version for novice students

would contain more background information and more detail, while the advanced version would

assume this information is known by the student.

However, this approach has some signi�cant drawbacks. First, a great deal of work is required to

create these di�erent versions of the slides. Either the instructor or another domain expert must

determine the material that should be included on each version of the slide. So instead of simply

constructing one slide, three must be made, each with slightly di�erent information.

20

Second, there is not much
exibility in the teaching, since all of the material is hard coded. There

are three ways to individualize the instruction, but only those three ways. This is too restrictive

for an intelligent tutoring system.

The second approach to developing multiple versions of the course material is to have only one

version of the slide hard coded, the advanced version. At certain points in this hard coded slide

content, supplemental material could be added if necessary. Using the 1's complement example

again, for a novice student, the slide would be constructed with all the relevant information on 1's

complement added. However, for the advanced student, the slide would be constructed without

this information. This would reduce the work required to put the slides on line, since only one

version of each slide would need to be written. But the places for supplemental material would

have to be identi�ed, and additional details written.

This alternative would also increase the
exibility in teaching. The tutor would not be restricted

to three versions of the material. Rather, it could add information only when necessary, further

specializing the course for each student.

The �nal, and most promising approach to developing alternate ways of teaching is to abandon

the slide format all together. Rather, we would construct a database of content objects, which are

of every piece of text, image, animation, and video that could be shown to a student. Each content

object would have an associated degree of di�culty, indicating how detailed and descriptive it is.

Also, associated with each object is some audio and video, which could be played when presenting

the object to the user.

Furthermore, each content object would have an associated instructional type. These instructional

types include de�nition, example, description, graphic, and animation. Each subtopic in the domain

would have at least one content object of at least instructional type. Figure 3 shows how the domain

will be arranged in this way.

The order of presentation of the subtopics within a topic is linear. However, how the subtopic is

presented is decided by the student model server. For each subtopic, the tutor, using the student

model, has two decisions to make. The �rst decision is which instructional types should be used.

The second decision is which content objects should be displayed for the chosen instructional

types. Choosing the content objects appears to be the easier decision, as the decision is based on

the student's model and the level of di�culty of the object. The tutor will pick the content objects

that are at the right level of di�culty for the student.

Choosing which instructional types to use is a much harder decision. There is no easy way to

judge which types work better for each student, and under what circumstances. An initial strategy

we are considering is to use more instructional types for students with lower scores on a topic and

less for students with higher scores. However, we would like to investigate techniques in which

we would be able to judge a student's learning style preferences and use these to choose which

instructional types should be used.

The advantage of this method is the system's
exibility in determining what to display to the

user. All of the user's interactions would be customized based on the student model, and two

students would almost never see the same page. For example, for a given subtopic, one student

may see content object 1 from instructional type 2 and content object 2 from instructional type 5,

whereas another student may see content object 3 from instructional type 1 and content object 1

from instructional type 2.

However, the disadvantage is the increased complexity in representing the domain knowledge

and in the engine required to create material to show to the user. The workings of the intelligent

engine will be driven by the student model, and will be discussed in the next subsection.

Another di�culty with this solution is the student cannot jump to other subtopics within a topic.

We are investigating a way to show the subtopics to the user so that he can choose what parts of

21

TOPIC 1

SUBTOPIC 1

INSTRUCTIONAL
TYPE 1

INSTRUCTIONAL
TYPE K

CONTENT
OBJECT 1

CONTENT
OBJECT M

CONTENT
OBJECT 1

CONTENT
OBJECT N

SUBTOPIC X

INSTRUCTIONAL
TYPE 1

INSTRUCTIONAL
TYPE K

CONTENT
OBJECT 1

CONTENT
OBJECT J

CONTENT
OBJECT 1

CONTENT
OBJECT Y

Figure 3: The content object structure for a generic topic

22

the topic to view.

With each of these solutions, the student model server must keep track of the actual page dis-

played to the student. Each time the student navigates through the course material, the student

model server is contacted to generate the content of the page. And this is the behavior we want

when the student is proceeding forward in the course. However, when students want to return to

previous material that they have just seen, using either our provided \previous" button or the web

browser's back button, a new page should not be generated. In this case, the student model server

should simply return the exact page the student had seen, without generating new content.

To do this, a unique code is generated for each page displayed to the user. This code is included

in the URL when the page is displayed. This unique code is also included in the URL which is

referred to by the MANIC previous button. If the student model server sees this code in the URL,

it knows to simply display the page associated with the code. The next button pointers and the

pointers from the index do not contain this code, so when those links are followed, the student

model server knows to generate a new page, choosing the appropriate content.

5.2 The student model

In this section we describe the representation of the student model and discuss how it enables the

tutor to individualize the course for each student and prefetch parts of the course material before

they are requested by the student.

5.2.1 The basic student model

The student model in MANIC is essentially an overlay model [15]. In an overlay model, the student's

knowledge is considered to be a subset of the expert's. The goal of the system, then, is to expand

the student's knowledge until it is equivalent to the expert's. No buggy knowledge is tracked, as

the system simply attempts to guide the student to learn the desired knowledge.

The MANIC student model tracks a student's \ability" on each topic within the domain. This

ability is represented as �ve scores. The �rst score records how much of the topic has been viewed.

This is determined by how many subtopics a student has seen on the topic. It is also in
uenced

by how long a student spends on each page. For example, a student who only spends 1 second per

page cannot learn the material as well as someone who spends 20 seconds. Accurately recording

this kind of timing information is impossible, since there is no way to distinguish someone staring

at a page for 30 minutes from someone who has gone to eat dinner.

The second score is determined by which version of the material the student has seen. If the

student sees a more advanced version, his ability on the topic is more highly rated. This score also

tracks if the student sees the correct version. For example, if the student sees the more advanced

version of the material, but this presentation is in error, the student model records this information.

In this case, the tutor judges if the presentation is in error based on whether the student clicks on

the hyperlinks to provide more details on the subtopics.

The third score records the student's access patterns for the pages. If he chooses to review some

of the material within the topic, then he probably does not understand it as well as someone who

chose not to review. Also if he did not listen to the associated audio, he may have missed some of

the information, thus reducing his presumed comprehension of the material.

The fourth score records whether the student has followed any of the hypertext links on any of

the pages to review the topic. If so, then he possibly did not fully understand that background

topic.

Finally, the �fth score is the student's quiz performance on questions associated with the topic.

23

How many questions the student got right and wrong, and their levels of di�culty, indicate directly

how much the student knows about the topic.

We have elected to use (at least) these �ve scores in order to retain as much information as

possible about the student. Each of these scores records di�erent information about the student,

and can thus be used in di�erent ways. For example, one of our prefetching decisions is based on

whether a given student follows hypertext links. By having a score for this information, we can

easily determine the hyperlink access patterns. Just having a single score on each topic does not

provide enough information about the student's learning styles and abilities.

It is possible that the student model we have just described will not be su�cient for the MANIC

system. Attempting to discern a student's understanding based on his access patterns may turn

out to be too hard. We may discover that the only way to accurately be able to judge a student's

knowledge is to base the student model mostly, if not solely, on quiz performance.

5.2.2 Keeping track of the student's past performance

In addition, the tutor needs to keep track of how the student's performance changes over time. For

this reason, we are using a history-based student model. Each action a student takes is recorded.

Since the domain is organized in terms of topics, student actions are associated with the topic

currently being studied. When a student leaves a topic to start another one, the appropriate scores

are calculated on the topic being left. Thus when looking at the overall score for a topic, the tutor

can return to this action-by-action record to see the trends in the student's learning.

For example, when considering quiz scores, if the student's initial score on a topic quiz is 50 and

his next score is 35, then the tutor can determine that the student is having di�culties since his

scores are declining. On the other hand, if his initial score on a topic is 10 and it changes to 80,

then the tutor might reason the student learned the material very well, and perhaps advance the

student through the curriculum at a faster rate.

5.2.3 Using pretests

When a student starts using a MANIC course, the student model has no information on the

student's knowledge and ability. Therefore, each student starts out with the same initial model.

As has been shown in [3], this a priori approach to student modeling is not su�cient for accurate

student modeling. Eventually, if we have designed the student model to update correctly, the tutor

will converge on the \correct" student model. However, it may take a long time for this convergence

to happen, and before it does, the student is not receiving the best instruction from the tutor.

One solution is to provide a pretest for all students who begin a MANIC course. This on-line

pretest would assess the student's basic understanding of the topics within the course and the initial

model will be closer to his actual student model than if he started with the default model. As a

consequence, the early curriculum and quizzes received by the student will be tailored to his needs

and abilities sooner than if the default model had been used.

The student will be advised that this pretest is intended solely to provide information for the

tutor to use when helping the student. He is not expected to perform well on the pretest, as the

material may be new to him. However, the information on the pretest will help initialize tutor

responses based on a more accurate student model.

5.3 Guiding the student through the material

Work in adaptive hypermedia has identi�ed two methods for adapting the material in a course to

each individual student: adaptive presentation [9] and adaptive navigation support [26]. The �rst

24

technique provides di�erent course content for di�erent students, while the second changes the links

visible from a given state. We use both techniques in the MANIC system.

When guiding a student through the course, the tutor assumes that the student is viewing the

course as we are, in terms of topics. However, this may not be the case. The student may be using

the material, for example, as a review. In this case, the student may not view most of the pages

for a single topic. Rather, his pattern for viewing the material will be inconsistent and appear

somewhat random. Guiding the student in this case may not be possible.

Although we do not necessarily want the tutor to control how a student progresses through the

material, we do want it to be able to help guide the process. There are a few ways it can accomplish

this, including suggesting topics a student should view and generating the content of the pages the

student sees.

In terms of topic suggestions, it is very unlikely that students will want to diverge from the

most obvious linear path through the curriculum (as demonstrated by the comments given to us

by students after our �rst test of the MANIC system). Therefore it is likely the student will follow

the tutor's suggestions, or even let the tutor decide which topics to learn. However, even though

student's may not follow alternate paths through the material on their own, the tutor can still

either suggest or provide (depending on who is choosing the next topic) review and remediation

when appropriate. Much of the review decisions are based on time between uses of the system.

The remediation decisions are based on quiz scores and the use of hypertext links.

On the other hand, regardless of the path taken by the student, the tutor will be able to alter

the content of the pages, based on the student model. In this section we discuss how topics are

prioritized and how the page content is individualized for each learner.

5.3.1 Suggesting topics

When a student �nishes a topic, a new topic should be started. There are two options for deciding

on a new topic: the tutor's choice or the student's choice. If the tutor chooses, the new topic

is started without informing the student of the choice. The tutor chooses the \best" next topic,

based on the student model and the topic net. On the other hand, if the student is choosing,

he is presented the list of topics, from which he must choose one. The list is annotated with

suggestions from the tutor as to which topics the student should study. The tutor thus provides

adaptive navigation support. This is similar to the mechanism used in ELM-ART [14] and in the

ISIS tutor [11]. As in those systems, the student has the option of either taking or ignoring the

tutor's suggestion.

Regardless of who is choosing the next topic, the process of ranking topics is the same. The

tutor examines all topics related to the topic just �nished and assigns a priority to each. These

priorities are based �rstly on the based the link weights. The higher the link weight, the higher the

priority for the topic. Secondly, the scores of all the prerequisite topics for the possible next topic

are considered. The scores that are considered, in order of importance, are the quiz grades on the

topic, how much of the topic was seen, how the material was viewed (i.e. whether the student had

to review earlier parts of the topic), and which version of the material was seen (i.e. what level of

di�culty were the content objects that were presented). If the scores are high on all prerequisite

topics, then the priority for this topic is higher than a topic with only half of its prerequisites having

high scores.

Another factor to consider is how recently those prerequisite topics have been seen. If they were

seen far in the past, a higher priority is given to a review of those topics than to moving on to

unlearned material.

As a result of this policy, a student may see a next topic that is highly related to the current

25

Figure 4: The topic list as it currently exists in MANIC

topic but whose prerequisites have not been mastered over a topic whose prerequisites have been

studied but whose relation to the current topic is not as strong. It is also possible that the opposite

e�ect will occur.

Finally, for remediation, the scores of a potential remedial topics' \next" topics are considered,

including those topics' quiz scores. If they are not high, greater priority is given to reviewing this

topic. This is of importance for topics that are in the domain, but only as background knowledge.

These background topics are not essential to teach, but if a student has shown di�culties learning

the topics for which the background knowledge is necessary, the background topics should be given

high priority. For example, the fork system call is discussed in a socket programming course, but

it is not taught. A background topic teaches this subtopic, not as part of the regular curriculum,

but as remediation when required.

If the tutor chooses the next topic, once each topic is assigned a priority, the one with the highest

priority is chosen and started. If the student is choosing, the list of topics, annotated by the priority,

is presented to the student.

Additionally, the student can see the topic list at any time while using the system. The list

is again presented with annotations from the student model server, based on the current student

model.

The list given to the student is just that, a list. In the future, we hope to be able to present the

domain structure in terms of the domain graph, so the student can see where he has been and where

he should go. Figure 4 shows the current interface and Figure 5 shows the proposed interface.

It should be noted that unless students take quizzes, the tutor does not have much data on which

to judge them. Therefore, its predictive abilities are limited. In this case, the tutor can suggest

prerequisite topics that have not been covered, but it will have no basis to judge if remediation on

topics not understood is necessary.

26

D

mastered

mastered

ready to start (100%)

not ready to start (0%)

C

A

B

Figure 5: The proposed topic list in MANIC

5.3.2 Determining which content objects to present

The student does not control every aspect of the learning. The tutor decides the content of the

pages and the audio, based on his scores on the topics. By doing so, the tutor uses the adaptive

presentation technique for customizing the material.

When generating the content of a page, the tutor must make two decisions: (1) which instructional

types should be presented and (2) which content objects for the chosen instructional types to include

in the �nal page. Choosing the instructional types should be based on the student's learning

styles, i.e. does he respond better to pictures or text, does he need examples, or does he need an

explanation? However, in our proposed student model, we have no way to determine such learning

styles. We will thus explore how to incorporate this information into the student model and then

how to use it to pick the appropriate instructional types.

When deciding which content objects to include in a given page, the tutor examines the student's

score on quiz material for this topic, which content objects he has seen in the past, which content

objects of the prerequisite material he has seen, and how many prerequisite topics he has studied.

Essentially, the tutor is predicting, from past behavior, the student's scores on the chosen topic.

For example, if a student has been doing well on all of the quiz questions and he has seen the

hard content objects in all prerequisite topics, then he should see the harder and more abbreviated

content objects for this topic. On the other hand, if a student jumps ahead to a more di�cult topic

for which there is no evidence that he is ready, he will be provided with the more detailed content

objects, which provide more information on the prerequisite knowledge.

Furthermore, if a student starts a topic as part of remediation, then he should be given an easier

version of the material, especially if he had seen the material previously. Remedial work should

provide as much support to the student as possible, and giving material that includes more detail

accomplishes this goal.

The tutor may not be completely accurate in its assessment of the student's ability and thus

it may present the wrong level of detail for certain topics. To compensate for this, the tutor is

designed to take a conservative approach. Students will generally see material that is either at the

right level of di�culty or easier, with the theory that more detail is better than less.

Even with this philosophy, mistakes will be made. For example, if a student has passed the

prerequisite topics for a given new topic, he still might not know all of the material. But if he is

given the more advanced versions of the material, without as much explanatory information, there

are still links to retrieve those details. Then if the student chooses to view those links, the tutor

must reevaluate its judgment of the student, downgrading its view of his ability.

27

5.4 Quizzing the student

Students have the opportunity to take on-line quizzes at any time while using MANIC, either

following the tutor's suggestion or choosing to take a quiz on their own. It may become necessary

to require quizzes, as they provide the student model the best source of information. However,

currently, quizzes in MANIC are optional.

5.4.1 Types of questions

The MANIC system supports three types of questions: true/false, multiple choice, and short answer.

The instructor for the course enters the question text and the answer, and in the case of multiple

choice questions, the distractors. Currently the system does not dynamically generate the question

text and answers, and we do not see that capability being incorporated any time soon.

Associated with each question is a subtopic that the question is testing as well as a \level of

di�culty." For example, a multiple choice question with obvious distractors is easier than a short

answer question (generating the answer is usually harder than being able to \guess" the right

answer).

5.4.2 Creating a quiz

The tutor dynamically decides, from a question database, which questions should be asked. The

tutor reasons about: (1) selecting questions for topics the student has just seen (and their prereq-

uisites) and (2) selecting questions for review. The factors which in
uence the tutor's decisions are

concerned with the subtopics describing the topic on which the student is currently working. These

factors include:

� Which content objects have been seen - If the student has seen the less detailed and di�cult

content objects, then he should receive harder questions than someone who has seen the easier

version.

� How frequently the material has been viewed - If the student is viewing the material for the

second or third time, based on the suggestion of the tutor, then it is unlikely he has fully

mastered the subtopics. Therefore, the questions he receives should not be at the highest

level of di�culty. However, if he is simply reviewing the material on his own, then he should

be given harder questions, due to his exposure to the material.

� The student's scores on prerequisite topics - If the student has understood the prerequisite

information, then there is a higher probability that he understands the subtopic being tested.

Therefore he should receive harder questions.

� Other questions on this subtopic - Has the student answered other questions on this subtopic,

either correctly or incorrectly? This should clearly impact which questions the student should

receive.

� General test performance - If the student, in general, does not perform well on these quizzes,

then he should not be challenged as much.

Each of these factors is considered when choosing questions to ask on a particular subtopic.

The tutor gives higher priority to those questions that have not already been answered correctly.

However, if there are no new questions on a given subtopic, one question is chosen as review.

28

The tutor may also choose to ask questions about topics on which the student has not demon-

strated su�cient mastery. In this case, the tutor looks at the scores for all topics. If the quiz score

on a topic is below a certain threshold, then the student is asked questions about the subtopics

within that topic. The tutor decides which questions to ask using the factors given above, with the

additional criteria that they be easier, if possible, than the questions asked previously. The student

will be asked review questions, both on material on which he has been quizzed, and on material

not yet quizzed but viewed some time in the past.

Likewise, the tutor may elect to do some review work on topics on which the student has done

well. This review is planned in the following manner. If the previous quiz score on a topic is above

a certain threshold, the tutor then looks at how long it has been since the topic had been part of

a quiz. If the time has been su�ciently long, then the topic is retested. The time variable is a

function of the topic's score: the higher the score, the longer the time interval allowed. If the score

on the topic is very high, there is a good chance the student knows the material, and will thus

need less frequent reminders. When testing a topic that has a high score, the tutor tries to choose

questions that are harder than those asked in the past. If none exist, those questions that have not

been asked for the longest period of time are chosen.

It should be noted that within a topic, it is possible that not all subtopics will be tested. This

will happen if it seems that the student has a good grasp of some subtopics, and it is not time to

review that subtopic.

An interesting side e�ect of our strategy is that it is unlikely a student will see the same questions

on two subsequent quizzes. As soon as the student enters his answers, the student model is updated.

If he then goes back to try to take the quiz again, a di�erent quiz will be generated, based on the

new information in the student model. Thus we do not have to counteract possible \cheating" by

students.

5.4.3 Grading a quiz

The student is graded on his quizzes, with correct answers leading to increasing his scores on the

corresponding topics. If the question is answered incorrectly, the tutor concludes that the student

did not understand the subtopic nor the corresponding topic. Then the student's assessment on the

topic is lowered and the question is marked as being answered incorrectly. Furthermore, the tutor

suggests that the student review the material corresponding to the subtopics he did not understand.

If the student elects to see these pages, he will see an easier and more complete version, since his

knowledge of the topic and subtopic have been downgraded.

Additionally, we are considering the possibility for the tutor to judge certain misconceptions that

the student has, which would result in an incorrect answer. If the student gives an answer which is

classi�ed as a common misconception, the tutor can explain to the student what that misconception

is and how to correct it.

5.5 Prefetching

With all the multimedia used in MANIC courses, the network is bound to su�er from di�culties

such as saturation and insu�cient resources to provide good quality of service. We are interested

in exploring solutions to these problems. However, our situation is di�erent from others on the

WWW. The MANIC system provides a closed environment in which we can analyze individual

user behaviors. This gives us a smaller testing environment for our work than the entire internet.

Many users on the World Wide Web complain of latencies experienced due to downloading a new

page [38]. Our solution to this problem is to prefetch material to the client's machine before it is

29

Student model server activity Proxy activity

Quizzes display pages

Server-based architecture Prefetch decisions request page to prefetch

all decisions made at server Construct pages

Display pages

Proxy-based architecture Quizzes Request objects to prefetch

client side page construction Construct pages

Hybrid architecture Quizzes Display pages

server side decisions, Decide objects to prefetch Prefetch objects

client side construction Decide how to construct pages Construct pages

Table 1: The three possible architectures

explicitly requested in real time. As we have discussed, we can only prefetch small portions of the

course at a time, due to limited cache space at the proxy.

This prefetching, if accurate, can reduce the delays seen by the user, since the requested infor-

mation will be available before it is requested. However, prefetching that is not accurate will waste

network bandwidth and cache space, by storing pages not requested by the user.

The question we must tackle in the MANIC system is how to make the prefetching accurate.

Prefetching has been implemented in both �le systems [30] and on the WWW [38]. The work in

these papers involves general population models for guiding the prefetching. Our work, however,

centers around individual user models to aid with prefetching.

While accurate prefetching would reduce the delay seen by the user, faulty prefetching will add

load and be useless, or possibly even detrimental to the quality of service received by all users. In

MANIC, and any prefetching system, some probability exists that prefetched data will not be used,

so the system will have done extra work that it could ill a�ord to do, and the work was to no avail.

Therefore, we also must investigate when not to prefetch. The worst delays will be seen when

the network, server, or proxy are saturated, i.e., the requests are coming in faster than they can be

serviced. When this occurs, prefetching should be throttled, since servicing the prefetching requests

adds more load to the server, the proxy, and the network, and takes processing power away from

real-time requests, which should have top priority.

In this section we explore three prefetching architectures. Table 1 summarizes the di�erences in

these architectures. But �rst we discuss what can and should be prefetched.

5.5.1 What to prefetch

The prefetching mechanism in MANIC can attempt to predict every action the student will take.

However, that is not realistic. Rather, there are three speci�c instances when MANIC will at-

tempt to prefetch. The �rst is prefetching while the student is viewing the material on one topic.

Prefetching can only be done if the system can determine the student's pattern through a topic.

Currently, only a few patterns can be detected within the MANIC system: (1) the student lets

MANIC control the display of pages in a topic and (2) the student linearly scrolls through a topic,

without listening to the audio. If either of these patterns is detected, the next page in the sequence

is prefetched. We are currently analyzing the access patterns from the �rst student experiences

with MANIC to identify other patterns students use for viewing the material. Most likely, however,

we will continue to only linearly prefetch within a topic.

The next category of prefetching occurs when the end of a topic is reached. Which new topic

should the tutor start to prefetch? Because no clear linear path through the course exists, this

30

work di�ers from that presented in [44]. If the tutor predicts the student is most likely to choose

one particular topic, it can start prefetching that one, ignoring the others. The tutor can begin to

verify its choices by seeing how accurate its predictions are for the student's choice of next topic.

However, another possibility is that the tutor will not reason with any con�dence about the

student's new topic choice. In this case, the tutor can prefetch the �rst page for each topic,

essentially \covering all bases." Once a topic is started, it alone can be prefetched.

A compromise between these two extremes is to prefetch the �rst few pages of the topics that are

most likely to be started by the student. These topics can be determined by viewing how the student

progresses through the course and matching this with the weights in the topic net. Those topics

with the highest relevance from the current topic are candidates for prefetching. To determine how

many pages per topic are prefetched, we use the simple rule: the higher the probability, the more

pages will be prefetched.

However, when prefetching multiple pages at once, a possibly severe problem arises, which we

discuss in the next section. Because of this problem, it is more prudent to just prefetch one page

ahead.

Another category of material that can be prefetched is the hypertext links that appear on some

of the pages. The student model tracks which kinds of hypertext links are usually followed. If a

link appears which is of a type the student usually follows, the tutor can prefetch that link. The

tutor can also judge if the student knows the material to which the link points. If not, then the

link content can be prefetched.

There is one instance in which we do not think prefetching will be successful. If the student

brings up the table to contents in order to jump to another part of the course, the tutor will most

likely not be able to determine which topic the student will choose. However, if it can with a

su�cient degree of con�dence, then some prefetching may be done.

5.5.2 Server Based Architecture

In this architecture, all of the prefetching decisions are made on the server side. The student model

server decides what should be prefetched, constructs the page and then sends it to the proxy. Each

page sent to the proxy has a unique identi�er (see section 5.1). The proxy then searches its

cache for a document with the desired identi�er before contacting the server for the material. In

this architecture, there is no intelligence at the proxy. This is the current implementation of the

prefetching mechanism.

Problems with this architecture

A possible problem arises with the current implementation concerning the use of prefetching. The

problem concerns possible staleness of the items in the cache. The tutor must decide the content

of the prefetched page, just as it does with all other pages. This content decision is based on the

student model. When the tutor creates the content of a page to be prefetched, it does so with the

student model it has at the time.

However, when the student actually views the document, his model may have changed, and thus

the content of the page would be di�erent based on the now current student model. But there is

already a cached version of the document at the client's site, so the request will not be forwarded to

the student model server. Therefore, the student will see an inaccurate version of the page, which

was constructed based on an old student model.

For example, if the student starts the audio for a topic, but then changes his browsing pattern,

the tutor may already have sent additional pages based on the original usage pattern. When the

student elects to see those pages that have been prefetched, they may not be accurate, since they

31

are based on a di�erent student model than the one the student currently has.

Speci�cally, say a student starts the audio for a given topic. Before he reaches the last page in

the topic, he stops the audio and goes back to an earlier topic and spends a signi�cant amount of

time there. Now when he goes back to see the last page of the original topic, his student model

has changed, and the page in the cache may not be accurate for his current state.

There are a few options for solving this problem. The �rst is to simply ignore it. We may decide

that the bene�ts of prefetching outweigh the bene�ts of educational content based on an \accurate"

student model. Another option is to clean out the cache periodically, i.e. those documents that

have been in the cache for a certain period of time without being accessed. However, this option has

the disadvantage of possibly evicting a page prematurely from the cache, causing an unnecessary

cache miss. On the other hand, this option could be implemented entirely within the proxy, without

any intervention from the student model server.

An additional solution involves intervention from the tutor. With this solution, the tutor can

track what documents are in the cache, since it sent them in the �rst place. If the tutor notices that

a document that has been prefetched is now stale, it can send a message to evict that document

from the cache.

Another possible problem with prefetching is that there is no guarantee that a prefetched docu-

ment will still be in the cache when the student must see it. This may occur due to some of the

solutions just discussed, or because the cache must evict some information. In either case, the stu-

dent model server needs to record that its prefetching prediction was correct, even if the document

had to be deleted from the cache. In this way, the tutor can gain positive reinforcement for its

reasoning, since it was correct, even if the document was evicted prematurely. Machine learning

techniques may be possible for this reinforcement.

A �nal problem with this architecture is that documents in the proxy's cache cannot be shared

by multiple users. If the proxy is being used by many students, then the amount of cache space

allocated to each student decreases. The reason this problem occurs is that for student A, page 53

may be di�erent from student B's page 53. If there was no dynamic content generation, then this

problem could be avoided.

When not to prefetch

Any solution that involves evicting documents from the cache has the potential to increase

network tra�c, thus slowing down the prefetching. Furthermore, prefetching which is inaccurate

will saturate the network with useless tra�c that could be used to satisfy real-time requests.

Therefore, we must examine when prefetching is and is not appropriate.

Within the current MANIC architecture, we need a mechanism for determining when the network

is saturated enough to indicate that prefetching should be slowed or halted. To do this, we need

to consider two factors: (1) the downloading delays and (2) the accurateness of the prefetching.

The only piece of the architecture that can determine the downloading delays is the proxy. The

proxy can record the time a request is made and then the time the response is received. However,

with this architecture, none of the \intelligent" processing is done at the proxy. Therefore, the

proxy returns the timing data to the server.

To do this, when the proxy makes a request, it sends the timing result of the last request made.

Thus each student model server will have an update on how fast the previous request was serviced.

Each student model server can keep track of the response times for its student. If the responses

are taking too long, prefetching can be stopped.

However, this policy gives us limited power to control the prefetching; the prefetching is either

on or o�. We would prefer a way to keep some accurate prefetching while stopping the inaccurate

prefetching. We can accomplish this by using the student models.

32

With the policy just described, we are not considering if the prefetched material is actually

being used by students. In other words, we are not considering the accuracy of the prefetching.

Prefetching that is accurate should not be slowed or stopped. On the other hand, prefetched

material that is not being used should not be sent.

Therefore, we must consider the individual student models when prefetching. Each student model

server calculates a degree of con�dence when prefetching. This con�dence measure is based on how

accurate the prediction mechanisms have been in the past. The student model server considers

both this degree of con�dence as well as the round trip delays when deciding whether prefetching

should be stopped. As the delays increase, a higher degree of con�dence is needed before an item

can be prefetched.

We must investigate how the network delays interact with the con�dence measure. One option

is to hard code timing thresholds and their associated con�dence measures. For example, if the

round trip delay is 500 msec, the con�dence value must be 50% before an item can be prefetched.

However, this policy is far too limited, since the round trip delays to di�erent parts of the world will

be di�erent. A 500 msec round trip time to Japan may be acceptable, but it would be unacceptable

to a machine across the hall.

A more reasonable approach is to record relative round trip delays. Each student model server

records the round trip delays for its student. Any signi�cant changes in these delays results in a

change in the con�dence level needed, i.e., if the delay goes up, so does the con�dence level. The

question to answer now is how much should the con�dence level change. For this, we will consider

hard coding increases based on changes in round trip times. For example, a 10% change in round

trip time results in a 10% change in required con�dence level.

5.5.3 Proxy Based Architecture

As we discussed in the last subsection, the current architecture may not be suitable for accurate

prefetching. In this section, we discuss an alternate architecture that would allow for accurate and

non-stale prefetching.

In this second architecture, all the decisions concerning the content of pages are made on the

client side. Furthermore, the documents the student sees will be constructed at the client's site.

By having the document construction occur at the client side, we will not be using a stale student

model. The decisions on what to display to the user will be made just at the time the page is to

be displayed, using the most up to date student model.

A question we must consider is how to construct the page at the client site. Should it be done

in the proxy or should we use a Java applet? Both would be able to contact the HTTP server

for information. However, with this architecture, none of the intelligence is stored at the HTTP

server. Therefore, the slide constructor must be able to contact the student model servers. Java

applets, for security reasons, cannot make internet connections to machines from which they were

not downloaded. Since it is not a requirement that the HTTP server and the student model servers

run on the same machine, we cannot use a Java applet for this purpose. For this reason, only the

proxy can be used for the purpose of constructing the slide.

With this architecture, the proxy would prefetch individual content objects rather than whole

pages. The proxy would then construct the slide from these content objects. Thus it is highly

probable that some of the prefetched material will be used, since there is no individualization in

what the objects are. The individualization comes when choosing the objects, and if the objects

are at the client's site, then they will be used when constructing the slide. It is also probable that

more objects than will be used will be prefetched.

There are two questions we must consider: (1) when to prefetch the objects, and how many to

33

fetch and (2) where to decide which objects to display.

When to prefetch the objects and how many

The �rst possibility for prefetching the objects is to download all objects associated with a topic

when the topic is �rst started by the student. For students who view entire topics to completion,

this policy would be e�ective. There will be some delay when a topic is started, to prefetch the

objects. However, once they are all downloaded, there will no longer be any latency. Obviously

this policy will download more objects than necessary, but that is unavoidable.

However, for those students who do not view the material in this way, this policy will prefetch

many objects that the user will not see, thus wasting bandwidth and time. Rather, for these

students, we should only prefetch the next n objects, where n represents a reasonable set of objects

from which the next page could be generated. With this policy, objects will need to be prefetched

as the pages are shown to the user. Essentially, we will only be able to prefetch ahead by one page

of material. However, in the work by [17], smoothing out the prefetching provided better network

performance than prefetching a lot of data at one time. Therefore, the second of these two options

may be preferable for increasing network utilization.

Because all students will be di�erent in how they use MANIC courses, the policy for how many

objects to prefetch, and at what time, should not be a static one. Rather, the tutor should evaluate

how the student is viewing the material and choose an appropriate policy.

Choosing the objects to display

In this architecture, the decisions on what objects to prefetch and what objects to display are both

made at the proxy. The advantage of this is that there is no network delay to retrieve the decision.

However, the proxy will have to be more sophisticated in order to be able to perform the decision

making. The proxy will need to maintain the student model and the intelligent decision making

ability. However, the student model will still need to be stored centrally at the server, so there will

be some duplication. Furthermore, if quiz decisions and topic suggestions are done at the server,

we will need to ensure consistency between the student models in both locations. A possibility,

then, is to have all the intelligent decisions made at the proxy. But as the proxy is running on

the client's machine, which is most likely slower than the server, the time required to make these

decisions may be too large. However, this may not be a bottleneck, as the time required to make

these student modeling decisions is relatively small. Furthermore, if the proxy is being used for

multiple students, the processing may be drastically slowed by having to compute for all students.

However, in the server based architecture, the server is serving multiple clients, and it may also not

be able to handle all the necessary processing.

When not to prefetch

As we have previously discussed, prefetching more data than will be used may saturate the network

with more tra�c than it can handle. Even with this new architecture, which has a higher probability

that some of the prefetched material will be used, we will see this problem.

There are a few problems we face in the new architecture. The �rst is that the proxy may not

be able to predict where the student will go next, and download objects that do not correspond to

the student's destination. In this case, none of the objects downloaded will be of any use. And by

the time the student is ready to see the subtopics described by those objects, they may have been

ushed from the cache.

Another problem we face in the new architecture is downloading too many objects to the proxy,

even though the proxy has accurately predicted how the student will proceed. This would occur if

the proxy is not con�dent on a small enough set from which the next slide could be constructed.

In this case, many objects covering the next set of subtopics would need to be prefetched to the

34

client, with only a few of them actually being used.

The proposed solution to this problem is similar to the solutions discussed in the server-based

architecture. We can use con�dence measures at the proxy to determine how many objects can

be prefetched without causing problems. If the proxy can \accurately" predict which objects to

prefetch, and this number is under the maximum allowed, they can be prefetched. Otherwise, only

some can be sent and the rest must be retrieved in real time.

5.5.4 Hybrid Architecture

This architecture is similar to the proxy-based architecture, except that the decisions about what

objects to prefetch and what objects to display are made at the server. The advantage of this is

there is no need to duplicate the student model at two parts of the system. Also, all the decision

making will be done in one location, by one process, running at the server. However, there will be

a network access for every page, and thus a delay, by contacting the server for the information.

5.5.5 A comparison of the architectures

Each of the architectures has their advantages and disadvantages. With architectures B and C, we

can avoid the staleness problem, since the cache does not contain any whole pages. Furthermore,

assuming in�nite cache space, if a student is linearly progressing through a topic, and the next

content objects are fetched, they will still be in the cache even if the student has studied other

material before those objects are needed.

However, even with architecture A, this is not a severe problem. At any point when the student

is making a large jump between course content, most likely what he will see will need to be fetched

from the server. The reason for this is it is unlikely that the student model is capable of determining

what jump the student will take. And even if he goes back to a topic he has seen recently, fetching

from the server, and thus causing a delay, is reasonable behavior.

Another advantage of the proxy-based and the hybrid architectures is the ability to more easily

share the proxy's cache. With the server-based architecture, since whole pages are dynamically

constructed within the student model server, those pages cannot be shared. However, with the

other two architectures, the content objects that are in the cache can be used for all students, and

thus can be shared.

One advantage of the server-based architecture is that no proxy is necessary. A student can

run a MANIC course without using the proxy at all. In the other two architectures, the proxy is

mandatory for using the course.

Overall, it appears that server-based architecture, even with the possible staleness problem, is the

best solution. However, more research into this question will be done to determine the appropriate

architecture for MANIC.

6 Proposed validation

In this section, we discuss the intended validation of the ideas presented in this proposal. We must

validate that our student modeling e�orts increase the learning of students. We must also validate

that the prefetching mechanism we have described will reduce the delays seen by users. Finally,

we must validate that the techniques we have developed are reusable, i.e. they can be used with

another course.

35

6.1 Validating the student model

We will perform both formative and summative evaluations of the MANIC system. During the

formative evaluations, we will be able to test the individual aspects of the intelligence as they are

added to the system.

In the summative evaluation, we will test the system both with the intelligent features and

without. Without intelligent features, the system will use default course content and a linear path

through the course material (as it was in the initial lectures). Also, the quizzes will be hard coded,

and thus will not be individualized for any student.

We will have two groups of students, one using MANIC with intelligence and one using it without.

Each group will be given a pretest to determine their knowledge of the domain material. They will

then use the system for the desired period of time. Afterwards, both groups will be given a post

test to determine how much knowledge was gained.

In each evaluation, we will also examine subjective measures, such as how pleasurable the learning

experience was and how much (or little) the intelligent features helped. If students do not enjoy

working with a MANIC course, then are e�orts are for naught.

We have done a preliminary study on the �rst implementation of MANIC. During the Fall of 1996,

15 students used the MANIC system as part of a one credit course on UNIX network programming

and Java. The version of MANIC at that time did not include adaptive quizzing, but did include

some prefetching techniques. Our main goal was to determine students' likes and dislikes about

the software, and to use this information to change the system.

Eight out of nine students expressed very positive feedback about MANIC. These eight students

indicated that they enjoyed the on-line course, with the ability to study at their convenience. Six

students liked the linear nature of the course, but the other three would have preferred to have

been able to choose what material to see next. Also, seven students said they would have taken

advantage of on-line quizzes.

However, not everything was perfect. Students complained about the screen layout, indicating

that we need to redesign with their comments in mind. Also, since the system is not stable, many

students had problems logging in, due to the instability of the servers and the proxy, which caused

a great deal of frustration.

6.2 Validating the prefetching

To validate the prefetching mechanism, we will rely mostly on simulations. The reason for this

is the proxy needs to be running on the client's machine to get accurate timing data. However,

the proxy has been written for a local machine. Furthermore, by using simulations, we can study

various prefetching strategies to compare their performance very easily, using the same student

data for each study.

Since students will be using the MANIC system for the validation of the student model, we will

have log information from those students. We can use this to determine how accurate the prefetch-

ing mechanism is. The accuracy of the prefetching will be determined by how many prefetched

documents have actually been accessed. The only way in which to do this is to record cache hits.

Currently, there is no way to determine if a document is in the cache because it was prefetched or

because it was downloaded in real-time. In the future we hope to add distinguishing features that

would allow us to know the reason why a document was in the cache. This would enable us to

better isolate prefetching hits versus other cache hits.

Additionally, we will investigate the hypothesized advantage of the intelligent prefetching method

used in MANIC, compared to a non-intelligent prefetching mechanism. To determine this, we

36

will run the simulations with both an intelligent and a non-intelligent prefetching algorithm. We

hypothesize that the intelligent prefetching algorithm will result in more cache hits than the non-

intelligent version.

Furthermore, we must study the correct parameters for slowing down or halting the prefetching.

To do this, we must add timing delays to the simulations to see if the student model server will

ever slow down the prefetching. While doing these simulations, we can investigate the correct

parameters needed to make the prefetching as useful as possible. Speci�cally, we can investigate

how the con�dence measures should be updated, based on the timing information.

We must also study our updating mechanism for how many documents are prefetched at once.

We can examine this by determining how many prefetched documents were evicted from the cache

but were then requested in real time. We then must investigate how this policy a�ects the number

of cache hits and the latency time experienced at the client side. We must also investigate how this

policy a�ects how stale documents are.

6.3 Reusability

To validate the reusability of the MANIC software, we will develop another course to be taught

via the WWW. We will convert the audio and the slides to be used within the MANIC framework.

We will also develop the additional topics and course material, including quiz material, to make

the course a full MANIC course.

7 Timeline

The following is a timeline for the work presented in this proposal. The dates given are when the

work will be completed.

� October 1997 - Build the domain net for a small course (7-10 topics)

� October 1997 - Build an initial student model

� January 1998 - Implement dynamic topic selection

� January 1998 - Implement dynamic page content generation

� February 1998 - Initial study with small course

� Februay 1998 - Build quiz database

� March 1998 - Implement dynamic quiz generation

� April 1998 - Re�ne student model to incorporate quizzes

� May 1998 - Start work on another, larger course

� Summer 1998 - Write domain for larger course

� Summer 1998 - Further re�ne student model

� Fall 1998 - O�er larger course for evaluation by students

� Fall 1998 - Implement prefetching strategies

� Fall 1998 - Investigate the best architecture for prefetching

37

� Winter 1998 - Use results of study to improve software

� Fall/Winter 1998/1999 - Develop full 3-credit course

� Spring 1999 - O�er full course to students

� Spring/Summer 1999 - Write and defend thesis

8 Conclusions

The work presented in this proposal involves research into three main areas:

� Intelligent tutoring - We plan on demonstrating how existing video taped courses can be

converted into on-line courses. Furthermore, we plan on showing that intelligence, in the

form of topic suggestion, page content generation, and dynamic quizzing are bene�cial to

students using this on-line system.

� Prefetching - We plan on demonstrating that prefetching can reduce the delays seen by the

students using MANIC. Additionally, we plan on showing that \intelligent" prefetching, based

on the student's model, will further reduce these delays.

� Reusability - We plan on demonstrating that the technology used in MANIC is not restricted

to one domain. Rather, any existing video-taped course with overhead slides can be converted

to be used within MANIC. However, some changes to the course material will be required.

In the future, we plan on using more general population models to aid in the decision making

process in MANIC. For example, general population models could be used to alter the instruction

of a MANIC course. If all students are having problems with some of the course content, the tutor

would be able to prepare for this with future students. With current intelligent tutoring systems,

this updating of teaching styles must be done o�-line.

Additionally, we will investigate the tradeo�s of using a shared proxy versus using one proxy for

each student. Prefetching decisions and cache replacement policies will be a�ected by how many

users are sharing the cache space. Furthermore, this decision may a�ect the choice of architecture,

as sharing the cache is easier in some architectures but harder in others.

38

References

[1] J. Anderson and B. Reiser. The LISP Tutor. Byte, 10(4):159{175, 1985.

[2] J. Beck, M. Stern, and E. Haugsjaa. Applications of ai in education. ACM Crossroads,

3(1):http://www.acm.org/crossroads/xrds3{1/aied.html, Fall 1996.

[3] J. Beck, M. Stern, and B.P. Woolf. Cooperative Student Models. In Proceedings of AI-ED97,

1997.

[4] T. Berners Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol - HTTP/1.0. Net-

work Working Group, RFC 1945, May 1996.

[5] A. Bestavros. Using Speculation to Reduce Server Load and Service Time on the WWW.

Technical Report 95-006, Boston University, 1995.

[6] B. Bloom. The 2 sigma problem: The search for methods of group instruction as e�ective as

one-to-one tutoring. Educational Researcher, 13:3{16, 1984.

[7] C. Bouras, D. Fotakis, V. Kapoulas, S. Kontagiannis, K. Kyriakou, P. Lampas, P. Spirakis,

and A. Tatakis. An interactive cooperative teleworking environment - telemethea. In ED-

TELECOM, pages 37{42, 1996.

[8] C. Bowman, P. Danzig, D. Hardy, U. Manber, M. Schwartz, and D. Wessels. Harvest: A scal-

able, customizable discovery and access system. Technical Report CU-CS-732-94, Univeristy

of Colorado - Boulder, 1995.

[9] C. Boyle and A. Encarnacion. Metadoc: an Adaptive Hypertext Reading System. In In User

Models and User Adapted Interaction, volume 4(1), pages 1{19.

[10] P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling and User-

Adapted Interaction, 6:87{129, 1996.

[11] P. Brusilovsky and L. Pesin. Isis-tutor: An Intelligent Learning Environment for Cds/Isis

users. In Proceedings of CLCE'94, 1994.

[12] P. Brusilovsky and E. Schwarz. User as Student: Towards an Adaptive Interface for Advanced

Web-Based Applications. In A. Jameson, C. Paris, and C. Tasso, editors, UserModeling:

Proceedings of the Sixth International Conference, UM97, pages 177{188. Vienna, New York:

Sprinter Wien New York, 1997.

[13] P. Brusilovsky, E. Schwarz, and G. Weber. A Tool for Developing Adaptive Electronic Text-

books on WWW. In Proceedings of WebNet-96, 1996.

[14] P. Brusilovsky, E. Schwarz, and G. Weber. ELM-ART: An Intelligent Tutoring System on

World Wide Web. In Intelligent Tutoring Systems, pages 261{269, 1996.

[15] B. Carr and I. Goldstein. Overlays: a Theory of Modeling for Computer-aided Instruction. AI

Lab Memo 406, MIT, 1977.

[16] T. Chen and J. Baer. A performance study of software and hardware data prefetching schemes.

In 21st Annual International Symposium on Computer Architecture, pages 223{232, 1994.

39

[17] Mark Crovella and Paul Barford. The Network E�ects of Prefetching. Technical Report 97-002,

Boston University, 1997.

[18] C. R. Cunha and C. F. B. Jaccoud. Determining WWWUser's Next Access and Its Application

to Pre-fetching. Technical Report 97-004, Boston University, 1997.

[19] D.W. Edwards and L. Hardman. Lost in hyperspace: Cognitive Mapping and Navigation in a

Hypertext Environment. Intellect Books, Oxford, 1989.

[20] C. Eliot and B.P. Woolf. Multiple Agents Acting in Parallel within an Intelligent Real-time

Tutor. In Proceedings of the National Conference on Arti�cial Intelligence, AAAI-96, 1996.

[21] A. Ellis and A. Debreceny. Electronic classroom: Features, users and evaluation studies. In

Educational Media and Hypermedia, pages 191{196, 1994.

[22] S. Glassman. A caching relay for the world-wide web. In Proceedings of the First International

World Wide Web Conference, Amsterdam, 1994. Elsevier.

[23] P. Gouzouasis. Video conferencing with preschool children: Mass communications media in

music instruction. In Educational Media and Hypermedia, pages 229{234, 1994.

[24] G. Gundavaram. CGI Programming on the World Wide Web. O'Reilly & Associates, Inc.,

1996.

[25] T. Joerding. User Modeling for Electronic Catalogs and Shopping Malls in the World Wide

Web. In Proceedings of the workshop "Adaptive Systems and User Modeling on the World

Wide Web", Sixth International Conference on User Modeling, June 2, 1997.

[26] C. Kaplan, J. Fenwick, and J. Chen. Adaptive Hypertext Navigation Based on User Goals

and Context. In User Models and User Adapted Interaction, volume 3(2).

[27] J.F Kurose, H.I. Lee, J. Padhye, J. Steinberg, and M. Stern. MANIC: Multimedia Asyn-

chronous Networked Individualized Courseware. Technical Report 96-75, University of Mas-

sachusetts, 1996.

[28] S. Lajoie and A. Lesgold. Apprenticeship training in the workplace: Computer-coached prac-

tice environment as a new form of apprenticeship. In Farr and Psotka, editors, Intelligent

Instruction by Computer, pages 15{36. Taylor and Francis, 1992.

[29] S.P. Lajoie. Computer environments as cognitive tools for enhancing learning. In S.P. Lajoie

and S.J. Derry, editors, Computers as Cognitive Tools, pages 261{288, NJ, 1993. Lawrence

Erlbaum Associates.

[30] H. Lei and D. Duchamp. An Analytical Approach to File Prefetching. In USENIX Annual

Techincal Conference, Anaheim, CA, January 1997.

[31] F. Lin, R. Danielson, and S. Herrgott. Adaptive interaction through www. In Educational

Telecommunications, pages 173{178, 1996.

[32] A. Luotonen and K. Altis. World-Wide Web Proxies. In Proceedings of the First International

World Wide Web Conference, Amsterdam, 1994. Elsevier.

[33] R. Mason. Synchronous versus asynchronous technologies for distance education. In ED-

TELECOM 96, pages 343{346, 1996.

40

[34] K. Nakabayashi, M. Maruyama, Y. Koike, Y. Fukuhara, and Y. Nakamura. An Intelligent

Tutoring System on the WWW Supporting Interactive Simulation Environment with a Mul-

timedia Viewer Control Mechanism. In Proceedings of Web-Net 96, 1996.

[35] K. Nakabayashi, M. Maruyama, Y. Koike, H. Touhei, and Y. Fukuhara. Architecture of an

Intelligent Tutoring System on the WWW. In Proceedings of AI-ED97, 1997.

[36] R. Nkambou and G. Gauthier. Use of www resources by an intelligent tutoring system. In

Educational Multimedia and Hypermedia, pages 527{532, 1996.

[37] J. D. Padhye. Can Intelligent Prefetching Make Web Browsing Faster? Department of Com-

puter Science, University of Massachusetts, 1996. Unpublished Synthesis Project Report.

[38] V. Padmanabhan and J. Mogul. Using Predictive Prefetching to Improve World Wide Web

Latency. In ACM SIGComm, pages 22{36, 1996.

[39] J. Pitkow and M. Recker. A simple yet robust caching algorithm based on dynamic access

patterns. In http://www.vuw.ac.nz/ mimi/www/www-caching/caching.html, 1994.

[40] P. Purcell and G. Parr. International collaboration using digital media. In ED-TELECOM

96, pages 263{269, 1996.

[41] A. Rebelsky. Improving www-aided instruction: A report from experience. In ED-TELECOM,

pages 276{281, 1996.

[42] E. Rich and K. Knight. Arti�cial Intelligence. McGraw-Hill, Inc., New York, 1991.

[43] J. Sener. Incorporating asynchronous collaborative learning into an as engineering program

for home-based learners: Challenges, strategies and tools. In ED-TELECOM, pages 314{319,

1996.

[44] F. Shipman, C. Marshall, and R. Furuta. Creating Educational Guided Paths over the World-

Wide Web. In Educational Telecommunications, pages 326{331, 1996.

[45] V. Shute. Smart evaluation: Cognitive diagnosis, mastery learning and remediation. In Pro-

ceedings of Arti�cial Intelligence in Education, pages 123{130, 1995.

[46] O. Signore, R. Bartoli, and G. Fresta. Tailoring Web Pages to User's Needs. In Proceed-

ings of the workshop "Adaptive Systems and User Modeling on the World Wide Web", Sixth

International Conference on User Modeling, June 2, 1997.

[47] M. Stern, J. Steinberg, H.I. Lee, J. Padhye, and J. Kurose. MANIC: Multimedia Asynchronous

Networked Individualized Courseware. In Educational Media and Hypermedia, 1997.

[48] M. Stern, B.P. Woolf, and J. F. Kurose. Intelligence on the Web? In Arti�cial Intelligence in

Education, 1997.

[49] A. Stinner. Contextual settings, science stories, and large context problems: Towared a more

humanistic science education. Science Education, 79(5):555{581, 1995.

[50] D. Suthers, A. Weiner, J. Connelly, and M. Paolucci. Belvedere: Engaging students in critical

discussion of science and public policy issues. In Arti�cial Intelligence in Education, pages

266{272, 1995.

41

[51] A. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

[52] G. Weber and M. Sprecht. User Modeling and Adaptive Navigation Support in WWW-Based

Tutoring Systems. In A. Jameson, C. Paris, and C. Tasso, editors, User Modeling: Proceedings

of the Sixth International Conference, UM97. Vienna, New York: Sprinter Wien New York,

1997.

42

