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ABSTRACT

The report describes the architecture of Cuypers, a system supporting second and third generation Web-based

multimedia.

First generation Web-content encodes information in handwritten (HTML) Web pages. Second generation

Web content generates HTML pages on demand, e.g. by filling in templates with content retrieved dynamically

from a database or transformation of structured documents using style sheets (e.g. XSLT). Third generation

Web pages will make use of rich markup (e.g. XML) along with metadata (e.g. RDF) schemes to make the

content not only machine readable but also machine processable — a necessary pre-requisite to the Semantic
Web.

While text-based content on the Web is already rapidly approaching the third generation, multimedia content

is still trying to catch up with second generation techniques. Multimedia document processing has a number of

fundamentally different requirements from text which make it more difficult to incorporate within the document

processing chain. In particular, multimedia transformation uses different document and presentation abstrac-

tions, its formatting rules cannot be based on text-flow, it requires feedback from the formatting back-end and

is hard to describe in the functional style of current style languages.

We state the requirements for second generation processing of multimedia and describe how these have

been incorporated in our prototype multimedia document transformation environment, Cuypers. The system

overcomes a number of the restrictions of the text-flow based tool sets by integrating a number of conceptually

distinct processing steps in a single runtime execution environment. We describe the need for these different

processing steps and describe them in turn (semantic structure, communicative device, qualitative constraints,

quantitative constraints, final form presentation), and illustrate our approach by means of an example. We

conclude by discussing the models and techniques required for the creation of third generation multimedia

content.

1998 ACM Computing Classification System: H.5.4, H.5.1, I.7

Keywords and Phrases: Multimedia, Transformations, CLP, XSLT, XML, SMIL.

Note: The research reported here has been carried out under the “ToKeN2000” project.

1. Introduction
An increasing number of organizations need to provide access to textual and hypermedia objects stored
and maintained in multimedia databases. Such access is provided through hypermedia structures and
interfaces. When information is made available over Internet or an organization’s Intranet, World
Wide Web browsers are the preferred user-interface platform. The World Wide Web consortium is
highly active in enhancing the hypermedia capabilities of Web components.

The biggest challenge in creating hypermedia presentations from databases containing hypermedia
objects is to automate, at least partially, the generation of these presentations. Furthermore, the
presentations must be tailored (or adapted) for the situation and needs of an individual user. The
design and generation of such presentations should require only a minimum of human intervention.

Automatic generation of hypermedia presentations involves making design decisions with respect
to information content, spatial and temporal layout and hyperlink navigation, modalities and media
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used, etc. Automatic generation of hypermedia presentations is currently mainly used in text-centric
environments as an template-based interface to strongly structured databases.

The innovation in the work stems from four separate issues:

1. the generation of a document corresponding to a rich hypermedia format, including temporal
synchronization of its constituent parts and the generation of links within multiple media (for
example, the SMIL [3] format)

2. the re-use of existing media items in a heterogeneous environment with widely varying client-side
devices (palm top, mobile phone, television with set-top box or multimedia PC);

3. the automatic adaptation to the user’s knowledge, preferences and task, as well as the compute
and network environment

4. employment of the encoded knowledge available to the system to automatically generate rich
semantic annotations for multimedia documents (for example using RDF [21]).

We base our work on the Standard Reference Model for Intelligent Multimedia Presentations (SRM-
IMMPS [5]), and explore the process of generating a hypermedia presentation, including temporal,
spatial and linking aspects, from media items selected from the database. This requires an extension
of the SRM-IMMPS to include design rules for temporal and linking aspects in addition to those for
spatial layout. The SRM-IMMPS approach includes the development of appropriate user-modeling
techniques.

1.1 First, second and third generating Web content
The evolution of the Web is sometimes described in terms of first, second and third generation Web
content [10]. In the first generation, the Web browser provided its users a uniform interface to a
wide variety of information on the Internet. URIs provide a simple but universal naming scheme,
and HTTP a simple but fast transfer protocol. In theory, HTML was designed to provide the ”glue”
between various information resources in the form of hyperlinks, and as a default document format
Web servers could resort to when other available formats were not understood by the client. In
practice, however, HTML turned out as being the format that was also used to put the bulk of the
content on the Web [4]. A major problem of the first generation Web content was the fact that all
this HTML content was manually written. This proved to be too inflexible when dealing with content
that is stored in existing databases or that is subject to frequent changes. For larger quantities of
handwritten documents, keeping up with changing browser technology or updating the ”look and feel”
proved to be hard.

In the current, second generation Web, the required flexibility is provided by a range of technologies
based on automatic generation of HTML content. Approaches vary from filling in HTML templates
with content from a database back-end to applying CSS and XSLT style sheets to give the content the
appropriate look and feel while storing the content itself in a form free of presentation and browser
related details. Current trends on the Web make the flexibility provided by the second generation
Web technology even more relevant. The PC-based Web browser is no longer the only device used
to access the Web. Content providers need to continuously adapt their content to take into account
the significant differences among Web access using PCs and alternative devices ranging from small-
screen mobile phones and hand-held computers to set-top boxes for wide-screen, interactive TV [16].
Additional flexibility is required to take into account the different languages, cultural backgrounds,
skills and abilities of the wide variety of users that may access their content.

By providing flexibility in terms of the presentation and user interaction, second generation Web
technology primarily addresses the needs of human readers. In contrast, third generation Web tech-
nology focuses on content that is both human and machine processable. Machine-processable content
is a pre-requisite for the more intelligent services that constitute the ”Semantic Web” as envisioned
by Tim Berners-Lee and others [4]. To provide real machine-processable content, next generation
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Web technology primarily needs to extend interoperability on the semantic level. Current Web rec-
ommendations focus on either syntactic issues or on semantics for a generic domain. Examples of
such generic domains that covered by current W3C specifications include the semantics of presenta-
tion (CSS, XSL), interaction (XLink, XForms), privacy (P3P) and content rating (PICS). The third
generation, however, needs to provide interoperability in terms of application and domain-dependent
semantics. A first step in this direction has already been taken by W3C specifications such as XML
and RDF.

New models and tools to improve the support for second and third generation Web currently receive
ample attention, both in research and commercial environments. Most of this attention, however, is
directed towards text-oriented applications. Multimedia content — that is, content that seamlessly
integrates multiple media types in a synchronized, interactive presentation — has some characteristics
that are fundamentally different from text. These differences mean that the models and tools that
are developed for text cannot be readily applied to multimedia. In this article we claim that — while
the need for second and third generation multimedia content is similar to that for textual content —
the technical requirements to support this need are substantially different.

The structure of the remainder of the article is as follows. First, we analyze the requirements for
multimedia presentation generation, focusing on the differences between text and multimedia doc-
ument transformations. Then we describe the different levels of abstraction that characterize the
Cuypers multimedia presentation generation system (the system is named after the Dutch architect
that designed several famous buildings in Amsterdam, including the Rijksmuseum and Central Sta-
tion). We discuss the use of these abstraction levels in the context of an example scenario. We
conclude by an overview of related work and a description of future work.

1.2 Requirements for Second Generation Multimedia Content
Many of the advantages of generated Web content over manually authored Web content are commonly
known and well described in the research literature [23] [26]. When the content and its underlying
structure are stored separately from the details of a specific presentation of that content, tools can
be developed to automatically adapt the presentation to the current situation, both in terms of the
capabilities of the technical infrastructure and the specific needs of the user. These advantages not
only apply to text, but perhaps even more to multimedia. One can argue that adaptation to the
available network bandwidth, presentation capabilities of the end-users platform, preferred language
and preferred media types is even more for important for complex, interactive multimedia than for
content that is mainly text-based. In this section, we explain the differences between the requirements
for second generation text and multimedia content.

Standards such as SGML [17] and XML [6] use embedded markup to encode documents in a
presentation-independent way in order to increase longevity, reusability and flexibility. The visual
appearance of these so called structured documents is defined by the specification of a style sheet. Style
sheets effectively define a mapping between the abstractions in the document structure and those in the
presentation structure. This mapping is defined using a style sheet language. In general, efficient run-
time execution and standardization of the style language (in order to be able to interchange documents)
is considered more important than the language’s flexibility and expressiveness. Additionally, for
most applications, the mapping can be described, relatively straightforwardly, in a functional way
— standardized style and transformation languages such as DSSSL [18] and XSLT [7] are functional
languages.

Style sheets as described above mainly come in two flavors: template-driven and content-driven.
Template-driven style sheets first set up the designed layout, and then fill in the content by querying
the source document or underlying database. This works well when

1. the underlying structure of the content is sufficiently known to allow effective querying,

2. the structure of the generated presentations is comparable and known in advance and
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3. the presentation structure is independent of the results returned by the query.

For example, the type and size of the information returned by each query and the number of items
queried for are required to be known in advance.

In contrast, in content-driven style sheets the size and global structure of the generated presentation
is not known in advance, so it cannot be defined by a template specification. Instead, the style sheet
defines a set of transformation rules that will be applied to the source document. Again, certain aspects
of the structure of the underlying content should be known, this time not to allow querying, but to
allow to define, for each rule, an effective selector which determines to which element(s) the rule will
be applied. In content-driven style sheets, the structure and size of the generated presentation varies
largely with the structure and size of the underlying source document. For most textual documents,
this is not a problem, since most textual elements can be flexibly nested and chained. Strict constraints
on the size of the resulting presentations are also rare: for online presentations, scrollbars make the
page length irrelevant, and for paged-media, extra pages can always be added.

Today’s style languages are, however, not suited for those rare cases that size does matter. It is,
for example, extremely hard (if not impossible) to write a style sheet that formats this HTML paper
and makes sure it exactly meets the conference’s 25 page limit. For many text-based applications,
however, these constraints do not apply, and the techniques described above work well. For almost all
multimedia applications, however, spatio-temporal positioning is not this flexible. In addition, there
are a number of other issues that prevent the use of text-oriented techniques for multimedia document
generation:

1. Multimedia uses different document and presentation abstractions,

2. Multimedia document formatting is not based on text flow,

3. Multimedia transformations need feedback from the formatting back-end,

4. Multimedia transformations are hard to describe in a functional language.

These four issues are discussed in the section below.

Multimedia uses different document and presentation abstractions The separation of the document’s
structure from its visual appearance is a fundamental and well known abstraction technique; both
in database and structured document technology. A less common distinction is that between the
specification of the document’s visual appearance and the realization of that in terms of the final-form
presentation format. For example, style languages such as XSL (and also DSSSL) define an abstract
formatting object model that can be used to define the visual appearance of a presentation in a way
that is independent of format-specific details of the final-form presentation. In this way, a single XSL
style sheet can be defined for a specific set of documents, and, depending on the available back-ends
for the XSL formatting model, the same style sheet can be applied for the generation of an online,
PostScript or RTF version.

XSL style sheets essentially map document abstractions onto presentation abstractions. For text,
this works well because on both levels, we have a commonly established set of abstractions to work
with. On the document level, chapters, sections, heading and titles, bulleted lists, etc. are abstrac-
tions that are frequently used across different tools. On the presentation level, the same applies to
abstractions such as pages, columns, inline, block-level and floating material, font families, etc. These
abstractions are not only applicable across many domains, they also have proven to be extremely
stable over time: while the majority of these abstractions originate from the early days of printing,
they are still highly applicable to today’s online documents. Even for text, however, transformations
based on the abstract formatting models of XSL or DSSSL are not (yet) widely used: most tools still
transform directly into target formats such as HTML or WML, bypassing the abstract formatting
model entirely. While this may be partly because of the relatively new XSL specification, another
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reason is that the advantages in terms of reuse do not always outweigh the disadvantages in terms of
decreased flexibility and increased complexity.

For multimedia, we still lack a commonly accepted set of abstractions, both on the document and
the presentation level. The relative slow acceptance of abstract formatting models for text, combined
with rapidly changing multimedia technology and the vast range of different multimedia applications
and presentation features will make it very unlikely that this situation is going to change in the
near future. This is highly unfortunate, because it means that a major advantage of todays style
sheet technology — the definition of style sheets independent from the syntactic details of the target
presentation format — cannot be applied to multimedia.

Multimedia document formatting is not based on text flow For text, we have an established set
of (complicated but) well understood algorithms [20] that can be used to automatically typeset a
text according to the requirements of a given layout specification. To keep the style sheet itself as
declarative as possible, the components implementing these relatively low level and detailed algorithms
are typically part of the style engine’s back-end application. These back-end components typically
implement kerning, hyphenation, justification, and line and page breaking algorithms. Note that these
algorithms are based on the linear structure of the underlying text. Since multimedia documents are
not based on such a text flow, these algorithms do not suffice for formatting multimedia documents.
For example, in text-based formatting, content that does not fit on a single page or screen is just
spread out over multiple pages, or rendered on a scrollable area that is larger than the screen. These
solutions are, in general, not applicable to multimedia presentations, where the very concept of a page
or scrollbar often does not make sense.

In addition, many document-level and presentation-level abstractions for text are also based on text
flow. For example, in a style language such as CSS, a key concept such as relative positioning refers
to the ability to specify the position of an object relative to its default position in the text flow. Such
flow-based models are, in general, not applicable to multimedia documents.

Multimedia transformations need feedback from the formatting back-end Most style and transforma-
tion languages do not support feedback from the rendering application back into the main transfor-
mation process. For example, information about the precise position onto which a specific word is
rendered, is only available after the rendering application has fully formatted the document (using
the algorithms described above). Consequently this type of information is not available in the trans-
formation process. For text, this limitation hardly ever causes problems: due to the flexibility of the
text flow, the system can in most cases adjust the layout to make it meet the given constraints. For
multimedia, however, the only way to determine whether a given layout specification can be realized
with respect to a given set of constraints is to actually solve this set of constraints, a task typically
performed not by a (high level) transformation engine, but by a (lower level) constraint solver imple-
mented in the back-end. For multimedia, it is thus of crucial importance to allow feedback from the
lower levels of the process to the higher levels.

Multimedia transformations are hard to to describe in a functional model Transforming a presentation-
independent structure to a presentation of acceptable quality is, when compared with text-centric
presentations, relatively complex for media-centric presentations. These mappings are often best
specified using a trial and error strategy, by backtracking over a set of alternative presentation rules,
trying out different sets of constraints along the way. In contrast, most textual transformations are
relatively straightforward mappings that can be better specified in a set of functional style rules. The
more complex transformations that are common in multimedia are more conveniently expressed in a
logic-based language with built-in support for backtracking and constraint solving.

The system introduced in the following section addresses these issues.
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Figure 1: The environment of the Cuypers generation engine

2. The Cuypers Architecture
Cuypers is a research prototype system, developed to experiment with the generation of Web-based
presentations as an interface to semi-structured multimedia databases. Cuypers addresses many of
the issues discussed in the previous section. First of all, it explores a set of abstractions, both on the
document and on the presentation level, that are geared towards interactive, time-based and media
centric presentations rather than presentations that are based on text-flow. Second, it uses a set
of easily extensible transformation rules specified in Prolog, exploiting Prolog’s built-in support for
backtracking. Finally, it facilitates easy feedback between the higher and lower level parts of the
transformation process by executing both within the same environment. Instead of a strict separation
between the transformation engine and the constraint solver, our system uses a constraint solver
embedded in Prolog, so the system is able to backtrack when the transformation process generates a
set of insolvable constraints.

Cuypers operates in the context of the environment depicted in Figure 1. It assumes a server-side
environment containing a multimedia database management system, an intelligent multimedia IR
retrieval system, the Cuypers generation engine itself, an off-the-shelf HTTP server, and — optionally
— an off-the-shelf streaming media server. At the client-side, a standard Web client suffices. The
focus of this paper is the Cuypers generation engine. Given a rhetorical (or other type of semantic)
structure and a set of design rules, the system generates a presentation that adheres to the limitations
of the target platform and supports the user’s preferences.

2.1 Levels of Abstractions in the Cuypers System
The experience gained from the development of earlier prototypes (e.g. work done by Bailey [23])
however, proved that for most applications, the conceptual gap between an abstract, presentation-
independent document structure and a fully-fledged, final-form multimedia presentation is too big to
be specified by a single, direct transformation. Instead, we take an incremental approach, and define
the total transformation in terms of smaller steps, which each perform a transformation to another
level of abstraction. These levels are depicted in Figure 2 and include the semantic, communicative
device, qualitative constraint, quantitative constraint and final-form presentation levels, resp.

Below, we describe each abstraction level and why it is needed in the overall process. We take a
bottom-up approach and start with the final-form presentation level, which is the level that describes
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Cuypers generation engine

Figure 2: The layers of the Cuypers generation engine.

the presentation as it is delivered to the client’s browser. This is also the level readers will be most
familiar with, since it describes documents on the level of their encoding in for example HTML [28],
SMIL [3] or SVG [12].

We subsequently add more abstraction levels, and end with the highest level, the ”semantic level”,
which completely abstracts from all layout and style related information.

1. Final-form presentation level At the lowest level of abstraction, we define the final-form
presentation, which encodes the presentation in a document format that is readily playable
by the end user’s Web browser or media player. Examples of such formats include, HTML,
SVG, and — the focus of our current prototype — SMIL. This level is needed to make sure
that the end-user’s Web-client remains independent of the abstractions we use internally in the
Cuypers system, and to make sure that the end-user can use off-the-shelf Web clients to view
the presentations generated by our system.

2. Quantitative constraints level To be able to generate presentations of the same information
using different document formats, we need to abstract from the final-form presentation. On
this level of abstraction, the desired temporal and spatial layout of the presentation is specified
by a set of format-independent constraints, from which the final-form layout can be derived
automatically.

An example of a quantitative constraint is “the x-coordinate of the top-right corner of picture X
should be at least 10 pixels smaller than than the x-coordinate of the top-left corner of picture
Y”. Such constraints provide a first level of abstraction, abstracting from the syntactic details
of the final-form presentation format, but also from the presentation’s exact numeric layout
specifications. While more abstract than the final form presentation, a specification at this level
provides sufficient information for the Cuypers system to be able to automatically generate the
final-form presentation. An off-the-shelf numeric constraint solver is used to determine whether
or not a given layout specification can be realized, and, if so, to generate any numeric layout
specifications needed. The use of constraints also gives the system the flexibility to automatically
adapt to small differences in screen size between, for example, two different handhelds or mobile
phones.
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In practice, larger differences cannot be solved at this level of abstraction. The use of numeric
constraints is, for example, not sufficient to cater for the differences between the small screen
of a mobile phone versus the large screen of a desktop web browser. Another drawback is that
it is hard to specify higher level requirements such as the fact that certain rules should be
applied consistently across the entire layout. In addition, for some final-form formats this level
of abstraction is just too low to be useful. For example, for the relatively flat spatial layout of a
SMIL 1.0 document, the constraints given above are well-suited. The same constraints, however,
are too low-level to generate the complex temporal hierarchy that gives a SMIL presentation its
adaptive scheduling information. On the implementation level, numeric constraints also have
serious drawbacks. For example, when automatic backtracking over alternative layouts is used,
a set of quantitative constraints might generate alternative layouts which are all equal, except
for one coordinate, whose value only increases or decreases with one pixel (or other unit) for
each generated layout.

The discussion above can be summarized by stating that numeric or quantitative constraints are
necessary because solving a set of quantitative constraints is the only way to determine whether
a specific layout can be realized with respect to a specific requirements. In addition, many
final-form formats use numeric information to define the layout presentation. For many other
purposes, however, these constraints are too low level and contain too much detail. Qualitative
constraints are introduced to solve these problems.

3. Qualitative constraints level An example of a qualitative constraint is “caption X is posi-
tioned below picture Y”, and backtracking to produce alternatives might involve trying right
or above, etc. Some final-form formats allow specification of the document on this level. In
these cases, the Cuypers system only generates and solves the associated numeric constraints
to check whether the presentation can be realized at all, it subsequently discards the solution
of the constraint solver and uses the qualitative constraints directly to generate the final form
output.

In the Cuypers system, qualitative constraints also provide a basis for defining meta-constraints.
Meta-constraints are necessary to specify more global properties of the resulting document,
and are used with Cuypers to ensure consistency across the presentation. For example, to
prevent some captions from appearing below figures and others above, a designer could add a
meta-constraint specifying that all captions should appear either below or above their figures.
Meta-constraints derive their name from the fact that they are implemented as constraints that
constrain the set of generated constraints.

While qualitative constraints solve many of the problems associated with quantitative con-
straints, they are still not suited for dealing with the relatively large differences in layout, e.g.
as in the mobile phone versus the desktop browser example given above. Therefore, another
level of abstraction is introduced: the communicative device.

4. Communicative device level The highest level of abstraction describing the presentation’s
layout makes use of communicative devices [24]. These are similar to the patterns of multimedia
and hypermedia interface design described by [14] in that they describe the presentation in
terms of well known spatial, temporal and hyperlink presentation constructs. An example of a
communicative device described in [24] is the bookshelf. This device can be effectively used in
multimedia presentations to present a sequence of media items, especially when it is important
to communicate the order of the media items in the sequence. How the bookshelf determines
the precise layout of a given presentation in terms of lower level constraints can depend on a
number of issues. For example, depending on the cultural background of the user, it may order a
sequence of images from left to right, top to bottom or vice versa. Also its overflow strategy, that
is, what to do if there are too many images to fit on the screen, may depend on the preferences
of the user and/or author of the document. It may decide to add a ”More info” hyperlink to the
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remaining content in HTML, alternatively, it could split the presentation up in multiple scenes
that are sequentially scheduled over time in SMIL.

Note that communicative devices, including the one described above, typically deal with layout
strategies that involve multiple dimensions (including space, time and linking), while the con-
straints discussed above typically do not cross the boundaries of a single dimension. Constraints
using variables along more than one dimension are called cross-dimensional constraints, and have
previously been discussed in [23]. Introduction of such constraints would simplify the definition
of many communicative devices and are the subject of further research.

While the communicative device level is a very high-level description of the presentation, we still
need a bridge from the domain-dependent semantics as stored in the multimedia information
retrieval system to the high-level hypermedia presentation devices. To solve this problem, we
introduce one last level of abstraction: the semantic structure level.

5. Semantic structure level This level completely abstracts from the presentation’s layout and
hyperlink navigation structure and describes the presentation purely in terms of higher-level,
“semantic” relationships. Typical examples include the presentation’s narrative structure or
rhetorical structure. In the current Cuypers system, we focus on the rhetorical aspects of
the presentation, because it applies well to the application domains we are currently building
prototypes for (e.g. generating multimedia descriptions of artwork for educational purposes).

The subdivision of the generation process in Cuypers is based on these different levels, with an
extensible set of transformation rules to move from one level to another (see the section on imple-
mentation below). In practice, however, the transformations works by backtracking up and down
different levels, and transformation rules may have access to information from several steps earlier.
To explain the different abstraction levels and the associated transformation steps, the next section
uses an example scenario to illustrate all levels.

2.2 Example scenario
In this section, we use an example scenario where the user (studying art history) just asked the
system to explain the use of the chiaroscuro technique (strong contrast of light and dark shading)
in the paintings of Rembrandt van Rijn. The system’s multimedia information retrieval back-end
queried its annotated multimedia database system and retrieved five images of paintings that are
annotated as using this technique, the accompanying titles and a general textual description of the
term chiaroscuro.

Semantic level: rhetorical structure A presentation is constructed around the concept ”Examples
of Chiaroscuro in the works of Rembrandt van Rijn”, using the images as examples of the the core
concept, and the text as an elaboration of the core concept. Additionally, to preserve the ordering of
the time the picture was made, the five images are shown in a sequence relation. The resulting tree
structure, using the notation common in Rhetorical Structure Theory [22] is shown in Figure 3 (the
titles of the individual paintings have been omitted for brevity). Note that while the generation of this
structure requires advanced knowledge of the domain, the organization of the multimedia database,
the user and this task, this generation process is carried out by the server’s multimedia information
retrieval system, which is considered to be beyond the scope of this paper. Here, we focus on the
Cuypers presentation engine, and assume the RST structure as the input given to the engine. The
input is encoded using a simple XML Schema to represent RST nucleus/satellite relations. The XML
associated fragment is shown in Figure 4.

High-level presentation semantics: communicative devices Note that the rhetorical structure given
in Figure 3 contains no information about the spatio-temporal layout of the final-form presentation.
This information is incrementally added by the Cuypers system, based on general design knowledge,
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elaboration

Examples of chiaroscuro in the works of Rembrandt van Rijn

example

sequence

Figure 3: RST tree representation of the input.

combined with knowledge about the underlying domain (e.g. ”17th century painting”), the task and
preferences of the end-user and the capabilities of the device that is used to access the Web. In the
first step, the input is matched against a set of rules designed to convert the input to a communicative
device hierarchy. Note that this is purely a design decision: in practice, designers of a particular
application will need to extend the default rule set that comes with the Cuypers system.

In the example above, the rules that match the input RST structure could, for example, map
the root nucleus (the label ”Chiaroscuro by Rembrandt van Rijn”) to the title of the presentation.
In addition, the rules determine that the title, elaborative text and the example section should be
visible at the same time, as close to another as possible. This is used by grouping these elements in
an communicative device named spatial adjacency [24]. Because the example section itself consisted
of a sequence of images of which the ordering should be preserved, the sequence is mapped to a
communicative device named bookshelf. The bookshelf’s layout strategy is parameterized, in this case
the strategy is to try to achieve a left-to-right, top-to-bottom ordering first, and to use a temporal
overflow strategy when it proves impossible to fit all images on a single screen. The resulting hierarchy
is sketched in Figure 5.

Qualitative constraint level While the communicative device hierarchy described above reflects the
most basic design decisions about the way the document should be communicated to the user, the
mutual relationships among the media items have not been established. This is done in the qualitative
constraint level, which converts the communicative device hierarchy to a graph structure, for example
the graph drawn in Figure 6. The graph structure consists of nodes and edges, where the nodes
represent the media items and the edges between the nodes are labeled with the constraints that
relate them. Composite nodes can be used to model useful hierarchical relationships between media
items at the constraint level.

Figure 6 represents the resulting graph after backtracking over several alternative solutions for
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<!DOCTYPE presentation PUBLIC "-//CWI/DTD Rhetorics 1.0//EN" "rhetoric.dtd">

<presentation xmlns="http://www.cwi.nl/~media/ns/cuypers/rhetoric">

<media id="title" ... refs to content/metadata database .../>

<media id="img1" ... />

<media id="img2" ... />

<media id="img3" ... />

<media id="chiaroscuro" ... />

<nsRelation>

<nucleus>

<mediaref idref="title"/>

</nucleus>

<satellite type="example">

<mnRelation type="sequence">

<nucleus>

<mediaref idref="img1"/>

</nucleus>

... ...

<nucleus>

<mediaref idref="img5"/>

</nucleus>

</mnRelation>

</satellite>

<satellite type="elaboration">

<mediaref idref="chiaroscuro"/>

</satellite>

</nsRelation>

</presentation>

Figure 4: XML encoding of the presentation’s rhetorical structure

converting the communicative device structure displayed in Figure 5. In this case, it turned out that
the user’s screen size is to small to display more than one painting at a time. As a result, all alternatives
that tried a left-to-right, top-to-bottom ordering of the paintings failed, and the bookshelf has resorted
to its overflow strategy: it decides to show the paintings one after the other, sequentially ordered in
time (represented by the before constraints on the temporal dimension that applies to all images in
the figure). During the time the images are shown, it makes sure that the title and descriptive text
are also shown (represented by the during constraints in the figure). Also note that to define the
communicative devices in terms of qualitative constraints, only a limited number of constraints need
to be specified directly. Most constraints can be automatically generated by the system. For example,
if the title is to be displayed during the description, and the description is to be displayed during
the examples, the system automatically derives that the title is to be displayed during the examples.
These automatically generated constraints are used when checking consistency rules such as ”always
show a title when displaying something else”. In this case, the system knows that the title is shown
during the examples, even when this is not explicitly specified by the transformation rules.

Quantitative constraint level To be able to check whether a proposed multimedia layout can be
realized, all the constraints need to be resolved on the lowest level. For the spatial and temporal
dimensions, this means that all the qualitative constraints need to be converted into numeric or
quantitative constraints. So if three images of a certain size are to be positioned left of one another
with a certain minimum padding, at this point the system needs to do the associated mathematics
to find out whether and how this can be done: it reformulates all the qualitative constraints into
numerical constraints, fills in the actual sizes of the images and acceptable padding distances, and
tries to solve the given set of constraints.

The conversion process involves many quantitative constraints that are automatically generated,
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adjacency

bookshelf

Figure 5: Example communicative device hierarchy.

and Figure 7 shows only a few of them. This is, however, very efficient from an implementation point
of view: the more constraints that are added, the smaller the constraint variable domains become,
and the faster a solution will be generated.

Note that part of the information generated at this step is only needed to make sure that layouts
meet the given constraints. Parts of the solution itself are too low-level to be useful in high-level
formats. Other parts of the solution, however are directly used and copied almost verbatim into the
encoding of the final-form presentation.

Final-form generation In the last step, the information accumulated in the previous steps is used
to generate the final presentation in SMIL. A snapshot of the result is shown in Figure 8.

The resulting SMIL markup is listed in Figure 10. As one can see, the encoding used for the layout
specification in the head is rather low level, and these are indeed the direct values generated by solving
the set of quantitative constraints. In contrast, the temporal hierarchy in the body has been generated
on the basis of the qualitative (Allen) constraints, realizing during constraints with <par> elements
in SMIL, and after constraints with <seq> elements.

2.3 Implementation
To exploit the possibilities offered by on demand multimedia presentation integration, we have inte-
grated the Cuypers core presentation generation engine with an off-the-shelf HTTP server (Apache),
as depicted in Figure 9 on page 15.

The server parses XML input as shown in Figure 4, using the XML parser of Apache’s Xerces
framework. The result is, via the DOM interface, converted by a Cocoon Java servlet to an equivalent
Prolog term. This Prolog term is the actual input taken by the core of the presentation engine, which
consists of a number of transformations written in ECLiPSe. ECLiPSe allows the transformations
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description:
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title:

Figure 6: Example qualitative constraint graph

to combine, within a single runtime environment, standard Prolog rule-matching and back-tracking
with high-level constraint solving techniques. This allows high level transformation rules to generate
alternative layouts using lower-level sets of constraints. Layouts with constraints that prove to be
insolvable automatically evaluate to false and cause the system to backtrack, trying alternative layout
strategies. In addition, the layout rules can exploit Prolog’s unification mechanism as a powerful and
extensible selector mechanism, without the need to implement a special purpose selector language
such XPath [8]. When the constraints for a given layout can be solved by ECLiPSe, this solution is
returned back to the servlet. The servlet converts the result back to XML (in this case SMIL), again
using Cocoon’s DOM interface.

The example described above focuses on the use of rhetorical structures as the main technique for
describing the input, and on SMIL for describing the final-form output. The core of the Cuypers
presentation engine, however, is independent of these formats. Any input that can be transformed to
a set of communicative devices can be supported by plugging in a rule set that transforms the input
to a set of communicative devices. The same applies to the output format, which can be modified by
adapting the lower-level rules that use the (solved) constraints to generate the final form output.

The constraints we currently use for the temporal dimension are based on the temporal relations
defined by Allen [1]: equals, before, meets, overlaps, during, starts and finishes, with similar relations
for the spatial dimensions X and Y. For the stacking order of the media items (the ”Z” dimension),
we use above and below constraints. Properties of these qualitative constraints, such as symmetry (A
equals B ⇔ B equals A) or transitivity (A during B and B during C ⇒ A during C) are described
using the Constraint Handling Rules (CHR, [13]) library of ECLiPSe.

2.4 Related work
Generation of synchronized multimedia presentations from higher level descriptions is not novel in it-
self. Spatial and temporal constraints for specifying multimedia are used, for example, in the Madeus
system [19]. The common architecture of a number of model-based systems for multimedia presen-
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description:
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Figure 7: Example (partial) quantitative constraint graph.

tations developed within the AI community resulted in the Standard Reference Model for Intelligent
Multimedia Presentation Systems (SRM-IMMPS) [5], and the relation between SRM-IMMPS with a
previous prototype of the system presented here has been described in [25].

Our work is also closely related to the work of Elisabeth André, who described the use of AI
planning techniques in combination with constraint solvers in her WIP and PPP systems [2]. The
main contribution of our approach is that it integrates the several processing steps into a single runtime
environment so that the system can freely backtrack across the different the levels. This allows high-
level presentation decisions to be re-evaluated as a result of constraints that turn out to be insolvable
at the lower levels (e.g. pixel level). Nevertheless, the individual levels remain conceptually separated,
which allows the definition of small, declarative design rules instead of the single hierarchy of planning
operators used by André.

3. Future work: towards third generation multimedia
Similar to third generation textual content, third generation multimedia will focus on machine-
processable content. Richly annotated multimedia presentations will not only facilitate intelligent
Web retrieval and brokering services, but also facilitate reuse of media content in other presentations.
XML-based media formats such as SMIL and SVG already anticipate this by allowing documents to
contain embedded annotations using metadata encoded in, for example, RDF. In the long term, when
there is a sufficient amount of annotated multimedia available, systems such as Cuypers would be able
to operate without the multimedia database depicted in Figure 1, and, instead, operate directly on
multimedia content found on the Web.

Adequately annotated multimedia is a key pre-requisite for this multimedia variant of the Seman-
tic Web. Unfortunately, current multimedia authoring tools provide little support for producing
annotated multimedia presentations. Much of the underlying semantics of the overall multimedia
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Figure 8: Snapshot of the resulting SMIL presentation (RealPlayer 7)

presentation and the media fragments it contains, remains implicit and is only present in the head of
the author. In contrast, in the Cuypers system discussed above, it is relatively easy to generate such
annotations automatically. Since the entire presentation-generation process in the Cuypers system is
based on explicitly encoded knowledge, this knowledge can be preserved and encoded as rich meta-
data annotations in the final-form presentation. Note that such metadata annotations can arise from
different knowledge sources and describe different abstraction levels. For example, when the system is
used to generated richly annotated SMIL, the metadata section of the SMIL document may contain
metadata about the individual media items (as retrieved from the underlying media database), the
rhetorical structure of the overall presentation, domain-specific knowledge of the application, etc. It
could also generate a report of the design rules and user profiles that were used to justify the chosen
the end-result (e.g. the machine-readable equivalent of ”this presentation contains much hi-end video
because it is generated for users with a broadband network environment”). This could, for instance,
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Figure 9: The core Cuypers architecture and its integration within the Apache HTTP server.
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<?xml version="1.0"?>

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"

"http://www.w3.org/TR/REC-smil/SMIL10.dtd">

<smil>

<head>

<meta name="generator" content="Cuypers 1.0"/>

<layout>

<root-layout id="root-layout" background-color="black" width="400" height="690"/>

<region id="title" left="10" top="5" width="400" height="50" fit="meet"/>

<region id="descr" left="10" top="55" width="400" height="200" fit="meet"/>

<region id="img" left="10" top="255" width="400" height="400" fit="meet"/>

<region id="ptitle" left="10" top="655" width="400" height="35" fit="meet"/>

</layout>

</head>

<body>

<par>

<text region="title" src="...query to multimedia database..."/>

<text region="descr" src="..."/>

<seq>

<par dur="10"> ... 1st painting+title ... </par>

<par dur="10"> ... 2nd painting+title ... </par>

<par dur="10"> ... 3rd painting+title ... </par>

<par dur="10"> ... 4th painting+title ... </par>

<par dur="10">

<img region="img" src="..."/>

<text region="ptitle" src=".."/>

</par>

</seq>

</par>

</body>

</smil>

Figure 10: SMIL encoding of the presentation shown in Figure 8.

be used by the browsers to help with automatic detection of errors in the settings of the end-user’s
profile.

While our future research will focus on generating richly annotated multimedia presentations, we
are also looking into extending the Cuypers engine to generate other presentation types, including
SVG and VRML. In addition, we are currently working on interfacing the engine with the Mirror [9]
multimedia information retrieval system.

The current implementation already uses an declarative encoding of the design, user and platform
knowledge. These different types of knowledge are, however, still intertwined. This part of the system
needs to be redesigned to be able to manipulated the different types of knowledge through interfaces
that are tailored to the different tasks and roles of the users that will need to control them.
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2. Elisabeth André. WIP and PPP: A Comparison of two Multimedia Presentation Systems in
Terms of the Standard Reference Model. Computer Standards & Interfaces, 18(6-7):555–564,
December 1997.

3. Jeff Ayars, Dick Bulterman, Aaron Cohen, Ken Day, Erik Hodge, Philipp Hoschka, Eric Hyche,
Muriel Jourdan, Kenichi Kubota, Rob Lanphier, Nabil Layäıda, Philippe Le Hégaret, Thierry
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