
XML Linking Language(XLink)

Creating Powerful and Flexible Hypertext

structures

Simon St.Laurent

Geek Cruises XML Excursion - January 2001

Copyright 2001 Simon St.Laurent simonstl@simonstl.com -

http://www.simonstl.com

Table of Contents

Hypertext for the 1970s

The Problem with Hypertext

HTML's Magical Simplification

Exploding Webs of Hypertext

The Pain of Document Management

Moving Beyond HTML

Linking and Open Vocabularies

A New Approach for XML

Simple Links

Recreating A HREF=

Moving from Paths to Sets

Moving Links Out of the Way

Creating Extended Links

Demonstration - Image Maps

The Behavior Question

Programming for Links

Styles for Links

The Question of Arcs

Managing Links - Extended Link Groups

Legal and Political Implications of Multidirectional Links

Alternative Approaches - Weaknesses of XLink

Alternative Approaches - Non-XLink Solutions

Moving Toward Generic Hypertext Applications

Questions

Copyright 2000 Simon St.Laurent

Hypertext for the 1970s

XLink promises a basic level of functionality, but

more than HTML

• Myth HTML's hypertext functionality provided developers
with a magical new set of tools for weaving hypertext webs.

• Reality HTML's hypertext tools are remarkably simple, even
crude. As sites grow larger, link management becomes
incredibly complicated.

• Promise XLink will provide a next generation of linking tools
for XML that are more sophisticated than HTML but still simple
enough for people and programs to manage.

The Problem with Hypertext

• Complex for Both Readers and Authors Building
hypertexts that are more sophisticated than simple outlines
can be very difficult, requiring authors to keep track of
potentially moving links. Readers may simply get lost in the
links.

• Interface Creation is Difficult Formatting links can be
complex, especially links that may lead to multiple locations. If
readers can't distinguish links from other content, they may
quickly grow frustrated. (Sometimes this is fun to do
deliberately, however.)

• Management is difficult Keeping track of links is extremely
difficult when the texts they connect are in flux.

• Ambition It's easy to get ambitious with hypertext and try to
set up things like 'conditional' links that only become active
when other links have been followed. This makes
management even harder.

HTML's Magical Simplification

Doing More by Doing Less

• Unidirectional Links HTML links are simple - they go from
'here' to 'there'. The 'there' is specified by a URL,and the 'here'
is the link's location in the document.

• Every Page an Island Pages don't need to know anything
about links directed toward them. Their URLs are sufficient
identifiers, though authors may supplement those with internal
anchors.

• No Nested Links HTML prohibits links within links, insisting
upon a simple model for one-dimensional links. There is no
'default' link for a page, or multiple layers of linking possibilities.

• Simplicity Encourages Development HTML finally made
hypertext easy enough that it could reach critical mass.

Exploding Webs of Hypertext

Critical Mass Creates an Unmanageable

Explosion

• The New Flexibility HTML made it possible to create an
enormous number of different site architectures. The
hierarchical models of Gopher and FTP directories remained
available, but any kind of cross-linking was possible. Perhaps
most important was the ability to link to other sites without
having to coordinate linking, which helped the Web bind tighter
and made splitting up site design simpler.

• Enough Power to be Pretty The IMG tag, which opened
enormous new commercial and other possibilities, is itself a
hyperlink, including images in documents by reference.

• Everyone an Architect HTML lowered the barriers to
hypertext design significantly, letting all kinds of people, from
programmers to graphic designers, become Web site
architects.

The Pain of Document Management

How much do broken links cost?

• Sites Keep Growing In 1996, a project manager I knew
kept a 10,000-page site and its links in her head, managing
changes throughout the site remarkably well. 10,000 pages is
no longer unusual, but people who can manage 10,000 pages
by hand are.

• Link Tracking One of the the most popular early tools for
HTML management was the link checker, which would explore
the site and find problems. Unfortunately, it could rarely
suggest ways of fixing them.

• 404 As sites grow larger and material gathers dust or is
discarded, broken links have become more and more common,
even (perhaps especially) on sites that focus on links.

Moving Beyond HTML

Hypertext Needs a Sounder Foundation

• Building on HTML The enormous number of developers
using HTML has familiarized a large audience with the use of
markup technology. < and > are familiar to Web developers, as
are the concepts of elements, attributes, and nesting.

• Moving Beyond Documents HTML was designed for use
with a particular document format, and has significant
limitations even for documents. Data applications that need to
reference information using hypertext have been forced into
this usually inappropriate document format.

• Customizable yet Standardized XML promises open
markup vocabularies that use generic syntax and processing,
making it possible to move beyond HTML yet still have generic
hypertext processing.

Linking and Open Vocabularies

Creating a Linking Vocabulary That Doesn't

Conflict

• 'A' doesn't live here anymore The A, LINK, and IMG
elements are just names to XML, which doesn't automatically
associate any kind of behavior with element or attributes.
Creating a new vocabulary requires building a meta-
vocabulary developers can integrate with their own
applications.

• Namespaces Developers who just want links but don't need
to customize them may be able to use the (controversial) XML
namespaces to accomodate linking information without having
to create their own linking vocabulary. XLink creates a set of
global attributes for use across documents.

• Integrated Linking On the other hand, developers who
want to build generic linking may want to combine linking
functionality with their own vocabularies. Earlier drafts allowed
developers to map XLink attribute names to any attribute
names; the current draft requires developers to use the XLink
names, though these operate in their own namespace to
minimize disturbance. It appears that the earlier requirement of
integration has been dropped.

• Building on Schemas and DTDs XLink functionality can be
added to your application with help from the defaulting
features found in XML 1.0 DTDs and the upcoming schemas.
There are some risks, however.

A New Approach for XML

Actually, Two Approaches

• Building on SGML/HyTime XLink uses ideas from the
much more sophisticated (and much more complicated) SGML
HyTime standard for hypertext linking, stripping them down to

a much simpler set of tools.
• Architectural Forms for Integration One of the key tools

from HyTime, architectural forms, provided the original
backbone of XLink.

• Namespaces for Unique Identifiers More recent drafts of
XLink use XML namespaces to keep the XLink vocabulary out
of the way of other element names. XLink's set of global
attributes can be used with any DTD or schema, and don't
have a DTD or schema of their own.

Simple Links

Backward-Compatible and Easy

• Forward Motion Simple links allow documents to reference
other documents, with no expectation that those documents
will reference back to them.

• No intelligence beyond the page Applications only need to
know about simple links while the page containing them is
open. Presenting and processing simple links requires only
that a page processor recognize, present, and act upon them.

• Backward compatible Simple links allow the recreation of
most (though not all) HTML linking capabilities.

Recreating A HREF=

The parts of a simple link

Attribute Notes

xlink:type When assigned the value 'simple', identifies the link as a

'simple' link. The link is inline and unidirectional and contains a

single target destination in an href attribute.

xlink:href Contains the URI that represents the target of this link.

xlink:role
Provides a "description of the link's content". For simple links,

could be used to style different kinds of links differently. Value

must be a URI.

xlink:arcrole
Describes the resource at the end of the xlink:href URI. For

simple links, could be used to style different targets of links

differently. Value must be a URI.

xlink:title
Provides a human-readable title for the link, pretty much like

the popup text that appears now in some browsers.

xlink:show
Provides the options new (appear in new window), embed

(included in text), and replace (appears in the current window)

for the link content, as well as other and none.

xlink:actuate

Offers the choices onRequest (wait for user activation) and

onLoad (process automatically) to indicate when link processing

should happen. other and none provide additional application-

dependent options.

Recreating A HREF=

Implied XLink Simple Link

Simple links are specified using an attribute value using xlink:type. An

example simple link using xlink:type as an attribute is shown below:
<mylink xlink:type="simple" xlink:href="http://www.simonstl.com" xlink:title="Author site"

xlink:role="http://www.simonstl.com/idURIs/authorlink" xlink:show="new"

xlink:actuate="onRequest" >Simon's Site</xlink:simple>

This would create a link, containing the text "Simon's Site", that would

point to www.simonstl.com. The title, which might pop up on a mouseover,

would be "Author site", and its role (in case anyone, perhaps a style sheet

cared) would be "http://www.simonstl.com/idURIs/authorlink". When

clicked on by a user, a new window would appear with the contents of

www.simonstl.com. For the most part, this approach allows to use your own

element names, but you are still required to use the attribute names,

complete with full namespace prefixes.

Moving from Paths to Sets

• Multidirectional Links While simple links do a great job of
moving users from one place to another, they require links all
over the place - the 'back' button is the most sophisticated
navigation tool most browsers provide.

• Sophisticated Modeling 'Linking' may be used
metaphorically, as well as to describe hypertext connections.
By providing a framework for describing sets, extended links
permit more powerful modeling.

• Fewer links, more connections Authors can write fewer
actual links while representing more paths. Because extended
links can represent multiple connections between resources,
the number of possible connections grows at n2 rather than n,
where n is the number of nodes.

• Memory Browsers need to remember links from previous
pages (or reload them constantly) for genuinely multi-
directional links to work.

Moving Links Out of the Way

'Out-of-line' links

• Easier to Manage Out-of-line links allow developers to
centralize link descriptions. Instead of including the links in the
document content, developers can create links that only

describe the resources they connect, and let the application
handle the actual connecting.

• Requires Extra Processing While they make life easier for
humans, out-of-line links require applications to do more work,
possibly involving a second pass over the document structure
to mark links.

• 'Resource' Mechanism The latest XLink draft uses
'resource' type child elements to identify in-line links.
Resources are pretty much locators without an xlink:href attribute.

Creating Extended Links

• Sets of Locators Extended links use containment to
identify sets of locators (and occasionally local resources). The
set is defined by a parent element, which contains the
properties for the set, while elements within that parent may be
locators or resources.

• Set Properties The set itself has a role and a title. This
information can be used to build link directories outside of the
context of particular documents and to define the type of link
within the document.

• Locator Properties Locators contain the all-important href
attribute, as well as role, title, and IDs. The href attribute is
really the identifying feature of a locator, providing a URL
pointer to resources.

• Arcs Extended links may also contain arcs, which identify
connections between particular locators. They provide detailed
information on traversal paths, including show and actuate
information.

Creating Extended Links

Extended Linking Element Attributes

Name Notes

xlink:type
Elements containing the attribute xlink:type with the value 'extended'

should be treated as extended links by XLink processors.

xlink:role
Provides a "description of the link's content". For extended links,

might be used to specify different kinds of processing for different

types of locator sets. The role must be a URI.

xlink:title

Provides a human-readable title for the link, pretty much like the

popup text that appears now in some browsers. Child elements

with an xlink:type attribute set to title may also be used in cases

where multiple titles are needed, perhaps for multi-language

scenarios.

Creating Extended Links

Locator Element Attributes

Name Notes

xlink:type
Elements containing the attribute xlink:type with the value 'locator'

should be treated as locator elements by XLink processors.

xlink:href Contains the URI, the target of this link.

xlink:role
Provides an identifier describing the locator's content. Must be a

URI.

xlink:label
Provides an identifier that can be used to identify how different

types of resources and locators are connected (by arcs) within a

link.

xlink:title
Provides a human-readable title for the locator, pretty much like

the popup text that appears now in some browsers.

Creating Extended Links

Resource Element Attributes

Name Notes

xlink:type
Elements containing the attribute xlink:type with the value 'resource'

should be treated as resource elements by XLink processors

xlink:role
Provides an identifier describing the resource's content. Must be

a URI.

xlink:label
Provides an identifier that can be used to identify how different

types of resources and locators are connected (by arcs) within a

link.

xlink:title
Provides a human-readable title for the locator, pretty much like

the popup text that appears now in some browsers.

Creating Extended Links

Attribute-identified XLink Extended Link

An extended link, described using xlink:type, is shown below:
<pictures xlink:type="extended" xlink:title="Wedding Pictures - Charlie"

xlink:role="http://www.simonstl.com/idURIs/scrapbook">

<photo xlink:type="locator" xlink:href="toast.scr" xlink:label="toast" xlink:title="Charlie

leads the toast" />

<photo xlink:type="locator" xlink:href="garter.scr" xlink:label="garter" xlink:title="Charlie

brings out the garter"/>

<photo xlink:type="locator" xlink:href="cakemess.scr" xlink:label="cake" xlink:title="Cake

down Charlie's shirt" />

<address xlink:type="locator" xlink:href="address.adr" xlink:label="address"

xlink:title="Charlie's Address" />

</pictures>

Note that we're not doing anything with the labels here, but we will be

using them as hooks later.

Demonstration - Image Maps

• Demonstration available at
http://www.simonstl.com/projects/xlinkfilter/code.html#example

The Behavior Question

show and actuate?

• An architectural question Some in the XML community
oppose the inclusion of 'show' and 'actuate', arguing that this
functionality is more appropriate to the realm of style sheets
and scripts.

• Not always there Style sheets aren't used in all XML
processing, nor is script processing always available. (The
previous demonstration, for example.) On the other hand,
applications may not always be able to support the choices
presented by XLink, either.

• A useful hook While it may not meet everyone's standards
for architectural purity, the show and actuate attributes may
prove useful as a foundation on which 'real' behavior can be
built. Recent drafts allowing applications to use other values
open these possibilities further.

Programming for Links

Building Sets of Graphs

• Generic Linking If and when the world standardizes on
XLink, developing processors for hypertext linking shouldn't be
the custom job it is today. Link extraction and processing
should become a task for libraries rather than precisely crafted
software.

• Interpretation The current specification leaves a lot of
questions open, especially about processing extended links.
Answering those questions in a way that can move across
applications is (presently) difficult.

• Linking as Integration XLink promises to let developers
treat the relationships beween XML documents much the way
they treat XML: as part of a solution that can be mapped into
many different application areas. XLink provides a layer on top
of XML that allows developers to work with sets of documents
as well as individual documents.

Styles for Links

Linking as Transformation Tool

• How strong a stylesheet? Advocates of a minimalist XLink
have long argued that extended link processing - the
conversion of sets of resources into traversable paths - is
something that should be handled by another layer, most likely
the style sheet layer. While Extensible Stylesheet Language
(XSL) may be capable of handling some of this work,
Cascading Style Sheets (CSS) is definitely not oriented this
direction.

• Memory 'Multi-directional' links require applications to keep
track of links as users traverse them. At present, there is no
way for an XSL stylesheet to keep track of this kind of
information, though extensions may allow applications to help
follow the information.

• Multiple trees XSL processing is complicated by the fact
that link locations in the original document need to be mapped
to the results of the transformation.

• Are links presentation or content? No one really knows -
or at least most everyone disagrees.

The Question of Arcs

Moving Toward Complete Extended Link

Processing

• From Sets to Graphs After considerable debate on the
xlxp-dev mailing list and internally at the W3C, the XLink
Working Group added Arcs to extended links. Arcs
(represented by xlink:type="arc") allow developers to describe
paths between the resources identified by locators within an
extended link.

• XArc One proposal would have replaced the entire
framework of XLink with a simple origin-destination scheme.
The distinction between simple and extended links would have
vaporized, and links could be in-line or out-of-line as
appropriate.

• Compromise The XLink Working Group's proposal allows
the use of arcs inside of extended links, and connects them to
label values on locators and resources. If wildcarding isn't
used, so specification of traversal paths is n2 where n is the
number of labels. (This is much better than previous versions,
which used ID values for each locator.) Missing values for from
and to are considered to represent 'all'.

The Question of Arcs

Moving Part-way Toward Extended Link

Processing

Name Notes

xlink:type
Elements containing the attribute xlink:type and the value 'arc'

should also be treated as arcs by XLink processors.

xlink:from
Identifies the origin, using a label value from one of the locator

or resource elements in the extended link. (If no value

appears, defaults to all locators and resources.)

xlink:to
Identifies the destination, using a label value from one of the

locator or resource elements in the extended link. (If no value

appears, defaults to all locators and resources.)

xlink:arcrole Provides an identifier describing the arc. Must be a URI.

xlink:title
Provides a human-readable title for the arc, pretty much like

the popup text that appears now in some browsers.

xlink:show
Provides the options new (appear in new window), embed

(included in text), and replace (appears in the current window)

for the link content, as well as other and none.

xlink:actuate

Offers the choices onRequest (wait for user activation) and

onLoad (process automatically) to indicate when link processing

should happen. other and none provide additional application-

dependent options.

The Question of Arcs

Attribute-identified XLink Extended Link, Plus

Arcs

<pictures xlink:type="extended: xlink:title="Wedding Pictures - Charlie"

xlink:role="scrapbook">

<photo xlink:type="locator" xlink:href="toast.scr" xlink:title="Charlie leads the toast"

xlink:label="toast" />

<photo xlink:type="locator" xlink:href="garter.scr" xlink:title="Charlie brings out the garter"

xlink:label="garter"/>

<photo xlink:type="locator" xlink:href="cakemess.scr" xlink:title="Cake down Charlie's shirt"

xlink:label="cake" />

<address xlink:type="locator" xlink:href="address.adr" xlink:title="Charlie's Address"

xlink:label="address"/>

<link xlink:type="arc" from="toast" to="address" />

<link xlink:type="arc" from="garter" to="address" />

<link xlink:type="arc" from="cake" to="address" />

</pictures>

Note the references to xlink:label values. Connections here are between the

pictures and the address only.

Managing Links - Extended Link

Groups

Centralizing Links for Easier Management

• Documents linking other documents Extended link
groups allow developers to put all of their links in a single file,
rather than having links spread out among other files. All links
in this model are extended and out-of-line.

• Just an arcrole To identify a linkbase, create an extended
link that includes a locator for the linkbase, and then create an
arc whose xlink:arcrole attribute is set to
http://www.w3.org/1999/xlink/properties/linkbase .

Legal and Political Implications of

Multidirectional Links

When Out-of-line is 'out of line'

• Linking to content you don't control Multidirectional links
could conceivably originate from content outside of your site.
Other users can provide annotations on their own pages,
which users traveling from those pages to your pages will see.

• Already enough lawyers Even 'traditional' HTML linking
has been enough to generate lawsuits. Being able to link
documents externally and reference fragments (through
XPointer) is going to bring out a whole new set of issues.

• Potentially offensive content What's annotation and
what's graffiti? You decide.

Alternative Approaches -

Weaknesses of XLink

Staying on the W3C's bus?

• The IMG problem Even simple-seeming elements like the
HTML IMG element can't be represented by XLink, as IMG
contains two locators, SRC and LONGDESC. It doesn't seem
unreasonable to have to locators as attributes, but XLink is too
brittle to support it. (Even in earlier versions of XLink, which
were more flexible, this was a problem.)

• The RDF problem Reconciling XLink and RDF, both of

which describe relationships among resources, is a fairly
complex and controversial task, best avoided.

• The Stylesheet problem Are graphic designers really the
people who should be designing stylesheets for handling link
processing?

• Waiting for the W3C The XLink group spent 15 months
between working drafts, though recent drafts have moved
much more quickly.

Alternative Approaches - Non-XLink

Solutions

• XArc Gabe Beged-Dov originally created XArc in response
to discussions on the XLink/XPointer (xlxp-dev) mailing list.
XArc was a radical simplification, providing a from/to locator
approach. It's been integrated with XLink to some extent.

• RDF The W3C's Resource Description Format (RDF) is
widely regarded as the hardest piece of XML. Nonetheless, it's
simple foundations on directed graphs and freer rules for
describing properties make it as capable, perhaps more
capable, than XLink for describing complex relationships. For
the most part, though, it's stuck in metadata.

Moving Toward Generic Hypertext

Applications

Still hoping for a silver lining

• W3C Support The W3C's own standards are still barely

using XLink. Getting XLink built into W3C standards seems
like a good first step, but it may be a long road. Similarly, even
the W3C's Amaya browser lacks generic XML and XLink
support.

• Browser Support Microsoft has remained very quiet about
XLink support. Mozilla does support simple links, though for an
older draft.

• Application Support XLink has potential for a wide range
of data-oriented XML tasks within traditionally non-hypertext
applications. Whether or not XLink provides enough tools for
that work and whether application developers will see XLink as
a plus remains to be seen.

Questions

• The XLink Specification - http://www.w3.org/TR/xlink/ - is the root of all
of this work.

• The XPointer Specification - http://www.w3.org/TR/xptr - is also worth
a look, providing tools used to specify locators smaller than a complete

document (and way beyond #name).

• The XArc Specification - http://www.jfinity.com/xarc/ - (not a W3C
specification, but an open project) was one alternative to XLink.

• Robin Cover's XLL page - http://www.oasis-open.org/cover/xll.html -
lists many resources for XLink development.

• Lloyd Rutlege's Hypermedia Research Links -
http://www.cwi.nl/~lloyd/Hypermedia/index.html - include a wealth of Web

and multimedia information.

• Elliotte Rusty Harold did a presentation -
http://metalab.unc.edu/xml/slides/xmlsig0899/ - for the New York Object

Developers' Group on XLink, XPointer, and XPath on 24 August 1999.

• Archives of xlxp-dev - http://www.fsc.fujitsu.com/hybrick/xlxp-
dev/maillist.html - (XLink/XPointer Discussion)

• Archives of http://lists.w3.org/Archives/Public/www-xml-linking-
comments/ - the W3C XLink list

