FlexXML:Engineering a More Flexible and Adaptable Web

Alan Kaplan and Jack Lunn
Department of Computer Science
Clemson University
Clemson, SC 29634-0974 USA
{kaplan,jlunn} @cs.clemson.edu

Abstract

Engineering applications for the World Wide Web is be-
coming increasingly difficult. Web engineers are forced to
contend with a heterogeneous collection of Web services,
which differ in terms of available bandwidth, display qual-
ity and connection tvpe. Faced with these sources of het-
erogeneity, Web engineers often publish separate, typically
redundant Web sites, each of which is tailored to a specific
Web device.

This paper describes an XML-based approach, called
FlexXML, that enables a more flexible and adaptable Web.
Using FlexXML, a Web engineer publishes a single Web
site, using XML to describe the site’s content and XSL to
specify a collection of style sheets. FlexXXML allows a Web
user to specify a document quality (e.g., text- or graphics-
based) that they desire from a Web site. Based upon the Web
user’s preferences and browser environment, the FlexXXML
framework automatically selects a suitable XSL style sheet,
creates the document and delivers the appropriate content.

1. Introduction

The World Wide Web (WWW) has evolved quite dra-
matically since its inception. In its early years, the WWW
was a relatively simple and homogeneous environment.
Browsers were generally confined to desktop platforms,
while Web site information consisted primarily of plain text.
Much of the initial power and popularity of the WWW came
from its simple and efficient HTML (Hypertext Markup
Language)-based model of site design, delivery and access.
Using HTML and an appropriate HTTP (Hypertext Trans-
fer Protocol) WWW server, a Web engineer could create
and publish information that could be accessed efficiently
by a Web user using almost any browser running on virtu-
ally any platform.

Nearly a decade later, the WWW has been transformed
into an extremely sophisticated and heterogeneous environ-

0-7695-1062-0/01 $10.00 © 2001 IEEE

405

ment, consisting of a diverse collection of browsers, de-
vices and network connections. Although browsers gener-
ally support the HTML standard, individual browsers often
have idiosyncrasies that can influence the design of a Web
site. Moreover, while browsers continue to be developed for
desktop platforms, browser technology is making its way
into a variety of other Internet devices, such as handheld or-
ganizers and cellular phones. Web users today are also more
likely to utilize a variety of network connections, ranging
from high-speed networks in the workplace to low-speed
modems on the road.

Despite these significant changes, the publication and
delivery model that was central to the early WWW has
largely remained the same. This situation is extremely un-
fortunate since it has had an enormous impact on how Web
engineers create and maintain Web sites and how Web users
access Web sites. More specifically, although the informa-
tion content provided by a Web site is essentially the same,
how the site is delivered efficiently and displayed can be sig-
nificantly different for different browsers, devices and net-
work connections.

The emergence of the XML-(eXtensible Markup Lan-
guage) and XSL (eXtensible Stylesheet Language)-based
model of Web site design, delivery and access [1, 4] rep-
resents an important opportunity for both Web engineers
and users. XML is used to specify information content and
structure, while XSL is used to describe translations from
XML to appropriate representations.

This paper presents an extension to the current
XML/XSL model, called FlexXML, whose overall goal is
to hide the various sources of heterogeneity that are inherent
in the WWW. FlexXML compliments XML/XSL by allow-
ing Web engineers to create a single WWW site that can be
accessed by Web users operating in heterogeneous environ-
ment. The approach also allows users to easily customize
their browser environments to adapt to different Web site
representations without sacrificing the quality of informa-
tion.

The remainder of this paper is organized as follows.

To motivate the FlexXML framework, Section 2 provides
a characterization of the sources of heterogeneity in the
WWW and their impact on both Web engineers and users.
The FlexXML framework in presented in Section 3 and a
FlexXML prototype is described in Section 4. An illustra-
tion of FlexXML is given in Section 5. A comparison of the
FlexXML approach with related approaches is given in Sec-
tion 6. The paper concludes with a summary in Section 7.

2. Heterogeneous Browser Environments

Today’s browser environments have become extremely
sophisticated and diverse. In particular, three primary
sources of complexity and heterogeneity include network
bandwidth, client browser applications and hardware de-
vices. Due to variations and differences in the browser en-
vironment, both developers and users encounter numerous
difficulties in their respective interactions with the WWW
In the remainder of this section, we outline the problems
associated with each of these sources of browser environ-
ment heterogeneity. In Section 3, we present the FlexXML
framework and show how it addresses these problems.

The Multiple Bandwidth Problem It is common for a
Web user to utilize a range of connections to the WWW,
each with different bandwidth capacities. For example, a
user might have a T1 connection in the workplace, a 56K
modem at home and a 14.4K cellular modem on the road.
Designing a Web site that accounts for bandwidth differ-
ences is a complex task, requiring Web engineers to bal-
ance the need for fast downloads with the attractive content
options (e.g., video, audio, graphics, etc.) that high speed
connections allow

When faced with the bandwidth problem, Web engineers
generally offer two alternatives. At best, they provide a re-
dundant, low-bandwidth version of a Web site and, at worst,
they simply ignore the multiple bandwidth problem and
provide only a single version of a site. While the former
approach is sometimes effective, it forces Web engineers to
maintain (at least) two different source trees, one for high-
bandwidth access and another for low-bandwidth access.
Maintaining two source trees is not only time consuming,
but often inconsistencies arise between the low-bandwidth
and high-bandwidth versions of a Web site. Frequently only
a subset of information is presented in a low- bandwidth
format, so only high-bandwidth users are able to access the
full content of the Web site. In addition, Web sites gener-
ally require explicit and manual navigation to the low- and
high-bandwidth versions of the site. Low-bandwidth users
often must wait for a graphics-intensive page to load before
they are presented with a link allowing them to navigate to
the low-bandwidth version of the site.

406

The single site alternative does not take bandwidth into
consideration. This “lowest common denominator” ap-
proach unfortunately fails to leverage the potential of high-
bandwidth connections. Other Web sites, though similarly
unappealing, are designed specifically for high-bandwidth
users. Under this option, low-bandwidth users must either
wait a considerable amount of time for the site to down-
load or are must go elsewhere to find the information they
require.

Based on the capacity of their bandwidth, users often
maintain separate URLs for particular versions of a site.
They must record both the address of the (default) graphics-
based site, when they expect full graphics, and the ad-
dress of the text-based site, when they are willing to forgo
graphics at the expense of faster access times. Other com-
mon practices employed by users include using text-only
browsers or manually toggling between graphics and text
display capabilities in a browser. None of these practices 1s
very appealing to users. Managing multiple names for a sin-
gle site is extremely confusing, while turning off graphics
capabilities generally results in a loss of document quality
and information.

The Multiple Browser Application Problem Another
problem faced by Web engineers is the proliferation of dif-
ferent Web browser applications, such as Lynx, Netscape
Communicator and Microsoft Internet Explorer. Web
browsers differ in their capabilities as well as their support
for current (so called) standards. For example, the Lynx
browser only downloads the text portion of a Web site. Be-
cause it ignores graphics, Lynx is very fast, which makes
it a viable solution for users with slow connections to the
Internet. In order to work effectively with Lynx, Web en-
gineers must provide an alternative textual description of
every graphic using alr-text tags (i.e., alternative text tags).
The use of alt-text tags is important because many hypertext
links use for navigation are hidden behind images. Thus, if
an alt-text tag is missing, navigation with Lynx is nearly
impossible. While this problem can be eliminated through
proper HTML coding style (i.e., always using alt-text tags
in conjuction with default graphic images), Lynx must still
reformat the presentation of a Web page dynamically. The
drawback of Lynx is that even with alt-text tags specifica-
tions for every image, many Web sites 'still look poor and
are difficult to navigate.

Many browsers also include proprietary extensions,
which naturally are not supported by other browsers. To
account for differences among browsers, many Web engi-
neers (again) resort to the “lowest common denominator”
approach and suffer the associated consequences. Alterna-
tively, Web sites are often designed to work only for a spe-
cific type of browser (e.g., Internet Explorer or Netscape).
Web users suffer since they must change browsers in order

to access the browser-specific site.

The Multiple Device Problem The rise of portable In-
ternet devices, such as cellular phones and portable digital
assistants (PDAs), presents yet another problem for Web en-
gineers and users. These new portable devices are problem-
atic not only because they utilize low-bandwidth connec-
tions, but also because their displays and memory capacities
are limited. Typical low-bandwidth or text-only solutions
are not sufficient because they are still designed with large
displays in mind. Such sites will not display properly on
devices with limited display sizes. An additional problem
is that most portable devices support only two-bit graphics,
so desktop browser images must be converted before they
can be viewed.

Web engineers have responded to the portable device
problem in three ways. The first is to create a separate, du-
plicate site made strictly for portable devices. The prob-
lems associated with maintaining duplicate sites are de-
tailed above. The second solution involves transforming
existing Web sites in real time into a format viewable on
the portable device. This transformation can occur on the
server side, client side, or on a middleware proxy. The prob-
lem with transformation-related solutions is that the trans-
formed document often looks distorted on a portable de-
vice. This problem occurs because the Web engineer has
sacrificed control over the layout of the page to the transfor-
mation engine. Recognizing the difficulties associated with
presenting Web pages on portable devices, Web engineers
have turned to a third solution, namely utilizing Wireless
Markup Language (WML) [10]. WML is optimized for de-
vices with small screens and low memory capacities. Be-
cause existing Web sites are coded with HTML, they must
be translated to WML in order to be viewed on WML de-
vices.

3. The FlexXML Framework

One of the primary benefits of XML is that separates in-
formation content and structure from information presen-
tation. Accompanying XSL specifications allow different
presentations to be produced using a single XML specifica-
tion. Unfortunately, the XML/XSL standard by itself does
not provide any means to automate the selection of partic-
ular XSL style sheets for a specific XML specification in a
given context.

The FlexXML framework is an extension to XML/XSL.
Using XML, a Web engineer develops a single specification
of the content for a Web site and creates various XSL style
sheets, each of which are tailored for different bandwidths,
browser applications and devices. For example, one XSL
specification might be used to create an HTML presenta-
tion for a high-bandwidth connection on graphics-intensive

BROWSER APPLICATION
7 PROXIES
e

Wirgless

\ wes
\ SERVER

- = U (~
6
Responses
Roquests 1
INTERNET 3
X SERVER
< r1 PROXY
R 72
\ J
Response
ORI S -/
~
4 5
w |
56K / XML XsL
T@A PARSER PROCESSOR
Response
U
1 2

Figure 1. The FlexXML Framework

display using Internet Explorer. Another XSL style sheet
(for the same XML specification) might create a WML pre-
sentation for a low-bandwidth connection on a text-based
display using a PDA browser application. Based on the par-
ticular browser environment, the FlexXML framework au-
tomatically selects the required XSL style sheet, applies it
to the XML specification and transmits the appropriate con-
tent. Thus, Web engineers do not have to maintain multiple
versions of a particular Web site.

FlexXML also offers Web users a unified view of a
Web site. A particular Web site has a single URL, inde-
pendent of a user’s, potentially changing, browser environ-
ment. When accessing a site, the content most appropri-
ate to their browser environment is automatically produced.
The FlexXML framework also allows users to customize
their environment. Users can indicate the kind of docu-
ments they expect from a site (e.g., text-based or graphics-
intensive) as well as indicate their current network connec-
tion. FlexXML uses this information to transmit informa-
tion that best fits a user’s browser environment.

Figure 1 gives a conceptual overview of the FlexXML
framework and its relationship to WWW services. The
FlexXML framework augments existing WWW services
with following four components: a browser application
proxy, a Web server proxy, an XML parser, and an XSL pro-
cessor. Each of these components, and their relationship to
one another, is described in detail below.

The browser application proxy is a transparent exten-
sion to existing bowser applications. Its purpose is to com-
municate browser environment features directly to a Web
server proxy (see below). There are two primary categories
of browser environment features. Browser customization

features include an indication of the current bandwidth and
a specification of text-only or graphics-rich content, while
browser application features include the browser type and
the browser device. These features can be specified by a
user and/or automatically supplied by the browser. Browser
environment features can be used to account for other im-
portant characteristics of an individual’s browser environ-
ment, such as time zone and language information.

The browser application proxy component is transparent
since it does not require modifications to existing browser
applications. Once configured, the browser application
proxy sits between a user’s Web browser application and
a Web server. The browser application proxy intercepts all
HTTP requests coming from a browser application. It then
packages each browser environment feature in the form of a
request header and appends it to the original HTTP request'.
The proxy server then forwards the amended request to the
Web server.

As shown in Figure 1, the FlexXML Web server proxy
sits between the browser application proxy and an actual
Web server. Its main purpose is to intercept and process
the HTTP headers that are added by a FlexXML browser
application proxy. The Web server proxy uses this informa-
tion to select an XSL stylesheet that best satisfies the user’s
browser environment features.

For example, an HTTP header created by the FlexXML
framework might indicate a request for “text-only” docu-
ments, while another header might indicate a request for
“graphics-intensive” documents. Using this information, a
Web server proxy automatically selects an XSL style sheet
best suited to transform an XML document into the desired
representation.

The server proxy forwards an XML document to the
XML parser. The parser generates a tree representation of
the XML document and then passes the tree to the XSL pro-
cessor. Using the XSL style sheet selected by the server
proxy, the XSL processor traverses the tree and generates
the appropriate representation for the Web browser by fol-
lowing the translation rules given in the XSL stylesheet.

4. Prototype

This section describes a prototype implementation of the
FlexXML framework. This prototype makes extensive use
of existing Java-based software components. One of the
benefits of the FlexXML framework is that it does not re-
quire modifications to existing web browser applications
and web servers.

The browser application proxy is implemented as a pure
Java application. The proxy includes a graphical user in-
terface (GUI) that allows users to select the type of repre-

ISection 5.3 of the HTTP specification allows the addition of experi-
mental headers to HTTP requests

408

sentation (text or graphics) that they expect to receive. Be-
cause it is written in Java, the browser application proxy is
able to run on a variety of operating systems without re-
compilation, including Linux, Solaris and Windows, and
devices, including desktop workstations, portable digital as-
sistants and cellular phones.

A user must configure their browser application to di-
rect HTTP traffic to the port where the browser application
proxy is listening. The proxy may be accessed locally or
remotely over a network. In the case of a local proxy, the
user directs the browser application to a local host, while for
remote proxies, the user points their browser to the machine
running the proxy on the network. Any browser applica-
tion that can redirect HTTP connections to an HTTP proxy
is capable of using the browser application proxy. Specif-
ically, our browser application proxy has been tested using
a variety of browser applications. Included among these
are Netscape Communicator, Lynx, Internet Explorer and
Palmscape.

As described in Section 3, all HTTP requests are redi-
rected to the browser application proxy. In our prototype
implementation, the browser application proxy adds a sin-
gle header called representation to every request.
The representation header can have one of two val-
ues, either text or graphics. The user can toggle this
value via the browser application proxy’s GUL Addition-
ally, the web server proxy reads the value of the HTTP stan-
dard user-agent header in order to determine what type
of browser is making the request. Based upon these two
headers, the web server proxy selects an XSL style sheet
and creates an instance of an XSL processor with that spec-
ification. If the web server receiving the HTTP request does
not support the FlexXML framework, then the repre-
sentation header is simply ignored and the request is
processed as an ordinary HTTP request. If the web server
supports FlexXML, then the request is passed to the web
SErver proxy.

The FlexXML prototype web server proxy is currently
implemented as a Java servlet [5]. The servlet is installed
on a Linux host running an Apache Web Server with serviet
support. This server is configured to redirect any requests
for XML documents to the Web server proxy.

The FlexXML prototype uses the Saxon XSL proces-
sor [9] to transform XML documents. Saxon provides an
implementation of XSL transformations [11] and includes
a Java API that allows the processor to operate inside a
servlet. Once an instance of an XSL style sheet is cre-
ated in memory, the servlet loads the XML source document
and sends it to an instance of the XML parser. The proto-
type uses a modified version of the Aelfred XML parser{2]
that is packaged with the Saxon distribution. The servlet
passes the parsed XML document to the XSL processor
which transforms the document. Finally, the servlet returns

the transformed document to the Web server which in turn
sends it back to the user’s browser application for display.

5. Example

In order to better understand the FlexXML framework
and prototype, this section describes a FlexXML-based de-
signed Web site from the perspective of both the Web engi-
neer and the Web user. Consider the problem of designing
a personnel directory service to be published on the WWW,
The service should include an entry for each employee giv-
ing their address as well as an accompanying photograph.
Furthermore, it should be accessible to employees on the
company intranet as well as to off-site personnel. While
building such a Web site seems straight forward, it actually
presents a number of difficulties for the Web- engineer, as
described in Section2.

In order to build the personnel directory using the:
FlexXML framework, the Web engineer must first. install
the FlexXML Web server proxy on the Web. server, create
data files in an XML format, and create XSL stylesheets that
transform the data for presentation on a Web browser. As-
suming that the Web server proxy has been installed, the
Web engineer must encode the personnel directory in an
XML format.

After encoding the XML directory, the Web engineer
creates XSL stylesheets, each corresponding to three types
of end-users in the company. One type of user works on-
site, has a direct connection to the company’s intranet, and
uses a high powered graphics workstation. A second type
of user works from home, has a 56K modem connection to
the internet, and uses a high powered personal computer. A
third type of user travels extensively and uses a low band-
width WML-enabled cellular phone to connect to the of-
fice. In this scenario, the Web engineer creates three sepa-
rate style sheets. For high bandwidth clients with graphics
capability, the Web engineer creates an XSL stylesheet that
generates a graphical representation of the personnel direc-
tory. For employees with full graphics capability but who
are hindered by low bandwidth the Web engineer creates an
XSL stylesheet that generates a text-only representation of
the personnel directory. Finally, for mobile employees with
WML clients and low bandwidth connections, the Web en-
gineer creates a style sheet that generates a text-only WML
representation of the directory.

From the Web users perspective, users wanting to access
the personnel directory must install a browser application
proxy, select their browser environment features and redi-
rect their Web browsers to the browser application proxy.
At this point, personnel directory is ready to be accessed.

To help understand the various steps that occur when
FlexXML is employed, we return to Figure 1, which illus-
trates the FlexXML framework. In step one, the user enters

409

the URL of the phone directory into their Web browser ap-
plication. The Web browser could be running on a personal
computer, a cellular phone, a PDA, or any other Web device.
The Web browser applications creates an HTTP request and
forwards it to the browser application proxy.

In step two, the proxy server receives the request from
the Web browser and adds a representation header to
the request. The value of the representation header is
either text or graphics, depending on the user’s pref-
erences. After adding the header, the browser application
proxy forwards the request to the Web server that hosts the
phone directory.

In step three, the Web server receives the request from
the browser application proxy. Because the request is for
an XML file, the Web server forwards the request to the
Web server proxy. The Web server proxy must then decide
which stylesheet to apply to XML specification of the phone
directory. In order to. make this decision, the proxy relies on
headers that accompany the request. All HTTP requests in-
clude a user-agent header. The user-agent header tells the
Web proxy server what type of client (e.g., Netscape, Inter-
net Explorer, Nokia, etc) made the request. The proxy uses
this header to determine what type of markup (i.e., WML or
HTML) that the client requires. Recall that in step two, the
browser application proxy adds a representation header to
the request. The Web server proxy uses the representation
header to determine whether the user wants text or graph-
ics. Using the user-agent and the representation headers,
the Web server proxy is able to select an XSL stylesheet
and create an instance of an XSL processor.

In step four, the Web server proxy creates an instance of
an XML parser. The XML parser ensures that the XML file
is well-formed and creates a tree representation of the file in
memory. The Web server proxy passes this tree representa-
tion to the XSL processor instance.

In step five, the XSL processor traverses the tree and gen-
erates the appropriate representation based upon the XSL
stylesheet. Control then passes back to the Web server
proxy.

In step six, the Web server proxy transmits a response for
display on the Web browser. The browser application proxy
then forwards the response to the Web browser (without fur-
ther modification) where it is then displayed, in step seven,
for the user.

This simple, but representative example, is intended to
illustrate the benefits of FlexXML. In contrast to traditional
approaches, Web engineers no longer are required to cre-
ate separate Web sites to handle variations in bandwidth,
browsers or devices. A single source document is shared
by all users regardless of their particular environment. Web
sites are easier to maintain since changes to the source doc-
ument are automatically propagated to all users. Variations
in client configurations (bandwidth, browsers, or hardware)

are easily handled by creating appropriate XSL stylesheets.
Web users have a single point of entry into a Web site re-
gardless of their environment, which greatly simplifies navi-
gation. Furthermore, users are able to customize their view-
ing experience by adjusting their browser application proxy
settings.

6. Related Work

Various approaches have been developed to address the
problems detailed in Section 2. Both the Apache project’s
Cocoon system [3] and IBM’s XML Enabler [7] use XML,
XSL, and servlets to provide device-specific content to Web
users. IBM provides an alternative solution through the use
of their proxy-based transcoding technology [8). Transcod-
ing represents an attempt to modify or “transcode” Web
content on the fly in order to tailor a presentation to a spe-
cific device. Taking a similar approach, [6] describes a
proxy based system that modifies graphical content for dis-
play on heterogeneous devices.

The servlet-based technologies (i.e., Cocoon and XML
Enabler) both allow the Web engineer to seperate the XML
content from the XSL presentation, which reduces the
amount of duplication that was previously necessary to ser-
vice heterogeneous clients. Furthermore, a Web engineer is
able to control the way the content will display on the client.
The drawback of both of these systems is that they rely
strictly on the user-agent header when selecting a stylesheet
for use with each client. Thus, the Web user is given no
choice as to what type of representation will be displayed.

The proxy-based technologies [6, 8] require little inter-
vention on the part of the Web engineer because they are
designed to work with existing Internet content. There is no
need to write stylesheets or convert data into XML. Further-
more, both proxy approaches allow the user to specify what
type of representation he or she desires. The drawback of
these approaches is that the Web engineer sacrifices control
over the presentation of the data.

The FlexXML system shares the advantages of both Co-
coon and XML Enabler while allowing the user to specify
preferences like the proxy based approaches. Thus, the Web
developer is able to tailor more than one style sheet for each
user-agent type and the Web user is able to select between
them. The FlexXML approach maximizes the control of
both the Web engineer and the Web user.

7. Conclusion

In this paper, we have presented the FlexXML frame-
work and a prototype implementation of the framework.
The FlexXML approach augments XML and XSL by al-
lowing a suitable XSL style sheet for an XML document to

410

be automatically selected for a given browser environment.
We have also illustrated the use of FlexXML by applying it
to a simple, yet representative problem.

The primary benefits of FlexXML is that it presents a
unified view of WWW services by allowing a Web site
to transparently adapt to changing user browser environ-
ments. In addition, Web users view a particular Web site
using a single URL, independent of their current browser
environment. Moreover, they have the ability to customize
their browser environment. This allows the most appropri-
ate content and presentation to be delivered based on their
current operating environment. FlexXML requires almost
no modifications to existing Web browser applications and
Web servers. Any Web browser application that has the
ability to redirect its HTTP requests to a general proxy can
be extended with the FlexXML browser application proxy.
Web servers that can be incorporate Java servlets can simi-
lary be extended with a FlexXML Web server proxy, XML
parser and XSL processor.

References

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso,
E. Gutentag, A. Milowski, S. Parnell, J. Richman, and
S. Zilles. Extensible Stylesheet Language (XSL), Ver-
sion 1.0. World Wide Web Consortium Working Draft, Oct.
2000.

Opentext corporation home page. http://www.opentext.com.
Cocoon users guide. http://xml.apache.org/cocoon/
guide. html.

T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. Ex-
tensible Markup Language (XML), Version 1.0. W3C Rec-
ommendation, Oct. 2000.

J. Davidson and D. Coward. Java Servlet Specification 2.2.
Sun Microsystems, Inc., Cupertino, CA, Dec. 1999.

A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapt-
ing to network and client variability via on-demand dynamic
distillation. ACM SIGPLAN Notices, 31(9):160-170, Sept.
1996.

IBM XML Enabler. http://www.alphaworks.ibm.com/tech.
R. M. J. R. Smith and C.-S. Li. Transcoding internet content
for heterogenous client devices. In Proceedings of the IEEE
Inter. Symp. on Circuits, Syst. (ISCAS), June 1998.

Saxon home page. http://users.iclway.co.uk/ mhkay/saxon.
Wireless Application Protocol Forum, Ltd. Wireless Ap-
plication Protocol, Wireless Markup Language Specifi-
cation, Version 1.3, wap-191-wmp edition, Feb. 2000.
http://www.wapforum.org.

XSL Transformations (XSLT), Version 1.0. W3C Recom-
mendation. http://www.w3.org/TR/xslt, Nov 16, 1999.

(21
(3]

4

[t

(5

—

(6]

(71
(8}

9
[10]

(1]

