
AHAM: A Dexter-based Reference Model for Adaptive
Hypermedia

Paul De Bra�, Geert-Jan Houbeny and Hongjing Wu
Department of Computing Science

Eindhoven University of Technology
PO Box 513

NL 5600 MB Eindhoven
The Netherlands

fdebra , houben , hongjingg@win.tue.nl

ABSTRACT
Hypermedia applications offer users the impression that there
are many meaningful ways to navigate through a large body
of information nodes. This rich link structure not only cre-
ates orientation problems, it may also be a source of com-
prehension problems when users follow paths through the in-
formation which the author did not foresee. Adaptive tech-
niques have been used by a number of researchers [1, 2, 4, 5,
6, 7, 8, 9, 10, 17, 19, 20, 22] in an attempt to offer guidance
through and orientation support for rich link structures. The
majority of these adaptive hypermedia systems (AHS) have
been used in educational applications. The terminology used
in this paper also has an educational “flavor”. However, there
are some adaptive on-line information systems (or “kiosk”-
systems), adaptive information retrieval systems, and other
adaptive hypermedia applications.

In this paper we describe a reference model for adaptive hy-
permedia applications, called AHAM, which encompasses most
features supported by adaptive systems that exist today or that
are being developed (and have been published about). Our
description of AHS is based on the Dexter model [15, 16], a
widely used reference model for hypermedia. The descrip-
tion is kept somewhat informal in order to be able toexplain
AHAM rather than formallyspecify it. AHAM augments Dex-
ter with features for doing adaptation based on auser model
which persists beyond the duration of a session. Key aspects
in AHAM are:

�Paul De Bra is also affiliated with the University of Antwerp, Bel-
gium, and with the “Centrum voor Wiskunde en Informatica” (CWI) in
Amsterdam.

yGeert-Jan Houben is also affiliated with the University of Antwerp, Bel-
gium, and with Origin in Eindhoven.

� The adaptation is based on adomain model, a user model
and ateaching model which consists ofpedagogical rules.
We give a formal definition of each of these (sub)models (but
only describe the pedagogical rules informally throughexam-
ples).
� We distinguish the notions ofconcept, page andfragment.
In some AHS these notions are confused.
� We provide a formalism which lets authors write pedagog-
ical rules (about concepts) in such a way that they can be ap-
plied automatically.

We illustrate various aspects of AHAM by means of some
features of some well-known AHS [6, 10].

Keywords: adaptive hypermedia, user modeling, hyperme-
dia reference model.

INTRODUCTION
Hypermedia systems in general, and Web-based systems in
particular, are becoming increasingly popular as tools for user-
driven access to information. Many hypermedia systems have
been developed during the past thirty years. In 1988 and 1990
a number of researchers and developers came together to de-
fine a common reference model for “modern” hypermedia sys-
tems. The resulting “Dexter model” was published at a NIST
workshop [15], together with some other models [12, 18], and
later also in the Communications of the ACM [16]. The Dex-
ter model describes an architecture that is more powerful in
some areas than any hypermedia system that exists today. How-
ever, the model is showing its age in other areas. This has re-
sulted in some newer proposals for models like the “Tower
model” [11], HDM [13] and OOHDM [23]. However, the
Dexter model remains by far the most widely used reference
model, which is still suited for modeling most kinds of hy-
permedia applications. This is also why we use Dexter as the
basis in this paper.

In recent years a number ofadaptive hypermedia systems (AHS)
have been developed [2, 4, 5, 6, 9, 10, 19, 22]. In adaptive hy-
permedia applications the system keeps track of evolving as-
pects of the user, such as preferences and domain knowledge.
This permanent and continuously updated record is called a



user model. It is used to guide the user towards interesting
new information and away from information the system con-
siders not to be appropriate or relevant for the user. The AHS
may do this by dynamically altering the hyperdocument’s link
structure and/or by dynamically generating or changing the
content of the information nodes. AHS are finding their way
into several different application areas, such as information
retrieval systems and educational systems that offer guidance
to students who are exploring an information space.

AHS are usually alsoadaptable, which means that the user
can set certain preferences explicitlyor initialize the user model
througha registration form or “pre-test”. In this paper we con-
centrate on automatic adaptation based only on browsing, not
on questions and answers. Testing and setting of preferences
is considered external functionality. We give a brief general
description of how to combine AHS with external functions,
and of how to let different AHS communicate with each other.

Brusilovsky [3] describes adaptive hypermedia as follows:

By adaptive hypermedia systems we mean all hypertext and
hypermedia systems which reflect some features of the user in
the user model and apply this model to adapt various visible
aspects of the system to the user. In other words, the system
should satisfy three criteria: it should be a hypertext or hy-
permedia system, it should have a user model, and it should
be able to adapt the hypermedia using this model.

The first aim of this paper is to describe AHS using known
and generic terminology. For that purpose we try to fit adap-
tive hypermedia in with (a slightly extended version of) the
Dexter model. This enables us to not only characterize and
compare different adaptive hypermedia systems, but also to
formally define AHS as (Dexter-based) hypermedia systems
and show how to plug adaptive techniques into the Dexter model.
Readers not familiar with reference models for hypermedia in
general, and with the Dexter model in particular, are urged to
review references [15, 16].

A second, but not secondary aim of theAdaptiveHypermedia
ApplicationModel (AHAM) which this paper defines is to
provide a sound basis for the development of new AHS. This
is achieved through a clear distinction between the following
items, which are often confused and mixed in AHS:

� Thedomain model describes how the information is struc-
tured and linkedtogether. It corresponds (roughly) to thestor-
age layer of the original Dexter model.
� The user model describes of which information about the
user an AHS keeps a permanent record. This includes a rep-
resentation of the knowledge which the user gains but also a
record of the nodes visited by the user.
� Theteaching model consists ofpedagogical rules which de-
fine how the domain model and the user model are combined
to provide ways to perform the actual adaptation. (The terms
teaching andpedagogicalare not meant to imply that AHAM
would only be useful for adaptive hypermedia used in educa-

tional applications.)
� An adaptive engine performs the actual adaptation by adapt-
ing or dynamically generating the content of nodes and the
destination and “class” of links in order to guide each indi-
vidual user differently.

This paper is organized as follows: the next section briefly re-
calls the basic concepts of adaptive hypermedia, as described
in Brusilovsky’soverview paper [3]. Subsequently we present
the architecture of adaptive hypermedia applications in terms
of the Dexter-based AHAM model. The paper ends with two
short sections: one illustrates how AHAM can be used to de-
fine communication between adaptive hypermedia applications
and between such applications and other system like systems
for evaluation a user’s knowledge; the final section describes
future work on aspects of Dexter that are not yet covered by
AHAM, e.g. in the area of authoring.

CONCEPTS OF ADAPTIVE HYPERMEDIA
Brusilovsky [3] distinguishes between high level methods for
adaptive hypermedia support and lower level techniques that
are used to realize or implement that support. By a method we
mean a notion of adaptation that can be presented at the con-
ceptual level. A technique is then a way to implement a spe-
cific method. Techniques operate on actual information con-
tent and on the presentation of hypertext links. It may be pos-
sible to implement the same method through different tech-
niques and to use the same technique for different methods.

We distinguishbetweencontent-adaptationandlink-adaptation.
(Brusilovsky [3] calls theseadaptive presentation andadap-
tive navigation.) We do so both at the level of methods and
that of techniques. We only present a very brief overview of
the methods and techniques. For a more detailed discussion
of adaptive hypermedia we refer to [3].

Content-adaptation
It may be desirable to present information on a certain topic
in different ways, depending on the user’s (fore)knowledge,
goals, preferences or other characteristic properties of the user.
Introductoryexplanations may be added for novices, advanced
details for experts. A description may exist in different ver-
sions, for users with different foreknowledge. The order in
which items are displayed (on a page) may also be different
for different users. At the level of adaptation methods we can
thus distinguish three methods:

� additional, prerequisite, and comparative explanations
� explanation variants
� (content) sorting

Brusilovsky mentions the following techniques for content-
adaptation (see [3] for details):

� conditional text
� stretchtext
� fragment variants
� page variants
� frame-based technique(s)



Conditional text can easily be used to implement stretchtext,
fragment variants and page variants. It is the lowest level tech-
nique and is sufficient to implement the different types of ad-
ditional explanations and explanation variants. When a con-
tent fragment is considered not desirable most AHS will leave
it out. Preliminary evaluation of the “SAD” system [17] how-
ever suggests that users may prefer these fragments to be grayed
out but still readable.
Frame-based techniques are used in AHS that dynamically
create presentations by applying natural language generation
techniques to paste together small fragments of information
and turning them into fluent text [21].

Link-adaptation

The basic idea with link-adaptation is to change or annotate
the rich link structure in such a way that the user is guided to-
wards interesting, relevant information, and kept away from
non-relevant information. Link-adaptation tries to simplify
the rich link structure to reduce orientation problems, while
maintaining a lot of navigational freedom, a typical property
of hypermedia systems. Link adaptation methods are:

� guidance, either at a global or local level;
� global or local orientation support;
� managing personalized views (on the link structure).

Guidance is offered by somehow indicating which links are
to be preferred over others. Orientation support depends on
providing context. It requires some (possibly textual) map
of the link structure around the “current” node (page). Note
that generating such a map or hierarchical table of content
may also be viewed as content-adaptation (or rather, content-
generation). The techniques found in [3, 10] for link-adaptation
are:

� direct guidance (e. g. a “next” button);
� link sorting (like in search engines);
� link hiding (hide non-relevant links, but keep anchor text);
� link annotation (e. g. use colors to indication relevance);
� link disabling (make non-relevant links not work);
� link removal (remove non-relevant link anchors);
� map adaptation (provide personalized overview).

There are no AHS that support all the methods and techniques
presented in this section. Using all link-adaptationtechniques
simultaneously would lead to an unusable system. But in fu-
ture systems an application designer (author) may be able to
select the techniques he or she desires, and have one system
that supports each choice. In the next section we present the
AHAM reference model, in which it is possible to represent
AHS that offer all these techniques.

THE ADAPTIVE HYPERMEDIA APPLICATION MODEL (AHAM)

In hypermedia applications the emphasis is always on the con-
tent of the informationnodes and on thelink structure. The
Dexter model [15, 16] confirms this by concentrating on what
it calls thestorage layer. It represents adomain model, i. e.
the author’s view on the application domain.

In adaptive hypermedia applications the central role of thedo-
main model is shared with a second part: theuser model. A
user model represents how the user relates to thedomainmodel.
The application domain deals with a number ofconcepts. The
user model keeps track of how much the user knows about
each of the concepts of the application domain.

In order to perform adaptation based on the domain model
and user model we need to specify how the user’s knowledge
influences the way in which the information from the domain
model is to be presented. We do this by means of ateach-
ing model which consists ofpedagogical rules. The rules are
used by anadaptive engine in order to generate what the Dex-
ter model calls thepresentation specifications. Figure 1 shows
the AHAM model as an extension of the Dexter model.

Model

User

Model

Domain

Teaching Model

Storage Layer

Presentation Specifications

Anchoring

Within-Component Layer

Run-time Layer

Figure 1: The AHAM model

Like the Dexter model, AHAM focusses on thestorage layer,
theanchoring and thepresentation specifications. In Dexter,
the central notion of the storage layer is thecomponent. This
notion covers both nodes and links. In adaptive hypermedia
the central notions are theconcepts andconcept relationships.

Definition 1 A concept component(or conceptfor short) is
an abstract representation of an informationitem from the ap-
plication domain. A concept is a pair <uid, cinfo>, where
uid is a globallyunique (object) identifier for the concept, and
cinfo is the component information. A component’s informa-
tion consists of:

� a set of attribute-value pairs;
� a sequence of anchors;
� a presentation specification.

The structure of attribute values, anchors and presentation
specifications is defined below.



The Dexter model distinguishes atomic from composite com-
ponents. AHAM does the same for concepts.

Definition 2 An atomic concept componentcorresponds to
a fragmentof information. It is primitive in the model. Its
attribute and anchor values belong to the within-component
layer. They are not described in AHAM (or Dexter).
A composite concept componenthas a childrenattributewhich
(has a value that) is a sequence of concepts. It may also have
a constructorattribute which indicates a possible “structure”
of the composite, and which may indicate “how much” of the
composite each subcomponent represents. In this paper we
only consider two kinds of composite concepts:

� An abstractcomposite concept has only children which are
composites themselves.
� A pageconcept has only children which are atomic con-
cepts.

The composite concept component hierarchy must be a directed
acyclic graph, i. e. no component can be a subcomponent of
itself, either directly or indirectly. Also, in AHAM every atomic
(fragment)concept is required to be a subcomponent of at least
one page concept.

Note that composites that have composite as well as atomic
children can be simulated by introducing extra intermediary
composites. The restriction in our definition simplifies the
implementation ofaccessor functions that translate uid’s to
components in order to allow their presentation. In order to
decide how to present a concept, the accessor function uses
theconstructor of abstract composites to select one or more
subcomponents. This process is repeated until the subcompo-
nent is a page concept. The constructor for the page helps to
build a presentation by selecting (and possibly sorting) frag-
ments.

Thesequence of anchors of a concept component provides a
way for links to be attached to a specific part of a component:

Definition 3 An anchoris a pair<aid, avalue>, where aidis
a unique (object) identifier for the anchor within the scope of
its component and avalueis an arbitrary value that specifies
some location, region, item or substructure within a concept
component. Anchor values of atomic components belong to
the within-component layerand are not elaborated in AHAM
(or Dexter). Anchor values of composite components are uid-
aidpairs, where the uid identifies a subcomponent of the com-
posite and the aididentifies an anchor within that subcompo-
nent.

In the Dexter model, a component is either an atom, a com-
posite or a link. Links represent relationships between com-
ponents. While the termlink suggests that these relationships
are used for navigation, the model does not require that. In
AHAM we chose the termconcept relationship to make it more

explicit that these relationships are used for many purposes,
not just for hypertext navigation. In this paper we only con-
sider relationships between concept components. The Dexter
model also allows links of which (some) endpoints are links.
We do not (yet) consider such relationships, mostly because
we know of no existing AHS that offers this feature.

Concept relationships in AHAM, just like links in the Dexter
model, consist of sequences of components. These compo-
nents however are not given as a unique identifier, but rather
as aspecifier which needs to beresolved to an identifier (or
a set of identifiers). In AHAM, unique identifiers are used
as specifiers, but these are not (always) the identifiers of the
“real” endpoint of a link or the element in a concept relation-
ship. When the endpoint or element is a composite concept
component, it needs to be “resolved” by traversing the com-
posite hierarchy down to the page level. This is necessary be-
cause only pages can be displayed. Like in the Dexter model
AHAM requires that there exists aresolver function which
performs this translation. This function is part of theadap-
tive engine of the AHS.

Definition 4 A specifieris a tuple<uid, aid, dir, pres>where
uid is the uid of a concept component, aid is the id of an an-
chor, dir is a direction (which is FROM, TO, BIDIRECT or
NONE), and presis a presentation specification.

This definition suggests that there are no “computable” spec-
ifiers. However, the computable part is hidden in the Dexter
model’saccessor andresolver functions that must translate
the uid of an abstract concept to the uid of one or more pages
to be presented.

Definition 5 A concept relationship componentis a compo-
nent <uid, ss, cinfo> where uid is the identifier of the rela-
tionship component, ssis a sequence of (one or more) spec-
ifiers and cinfo is the component information which consists
of:

� a set of attribute-value pairs; this set must include an at-
tribute type;
� a sequence of anchors;
� a presentation specification.

The Dexter model allows for relationships with a sequence of
just one specifier (see e. g. [14]). While we allow such re-
lationships for conformance with Dexter, current AHS only
consider relationships between at least two specifiers.

The most common type of concept relationship is of course
the typelink. It corresponds tolink components in the Dex-
ter model that are used for hypertext navigation. However, in
AHAM we consider other types of relationships as well that
play a role in the adaptation. Which relationship types exist
depends on the AHS. Some AHS may allow authors to “in-
vent” new relationship types as desired. Some relationship
types found in existing AHS are:



� A concept relationship of typeprerequisite means that for
the sequence of specifiers holds that the specifiers with a di-
rection FROM representprerequisite knowledge for the spec-
ifiers with a direction TO. We shall see later how this corre-
sponds to a rule which says that all prerequisite knowledge
must be acquired in order to gain (desired) access to the con-
cepts identified by the TO-specifier(s). The relationship may
also have an attribute-value pair for prerequisite concepts to
indicate how much of a concept needs to be known in order
to gain access to the TO-specifier(s).
� A concept relationshipof typeinhibitor is “complementary”
to the typeprerequisite. It means that for the sequence of spec-
ifiers it holds that in order to have (desired) access to the TO-
specifier(s) the user must not have too much knowledge about
(the concepts that correspond to) all the FROM-specifiers. Attribute-
value pairs are used to indicate how much knowledge about
each FROM-specifier is allowed in order to still have access
to the TO-specifier(s).

Definition 6 The atomic concept components, composite con-
cept componentsand concept relationshipcomponentstogether
form the domain modelof an adaptive hypermedia applica-
tion.

Adaptive hypermedia systems distinguishthemselves from other
hypermedia systems by maintaining a (permanent and con-
tinuously updated)user model. From figure 1 we see that the
user model in AHAM is part of thestorage layer. Accord-
ing to the general design of the Dexter model this is a logical
place for the user model. Therun-time layer in Dexter would
be able to perform some adaptive functions, but only within a
single browsing session. Adaptive hypermedia applications
need to maintain a permanent user model. Such permanent
information which exists at the conceptual level also does not
belong in thewithin-component layer because that layer deals
with implementation-specific elements which are not elabo-
rated in the Dexter model.

In adaptive hypermedia systems a user model is based on a
user’s knowledge aboutconcepts. Different AHS may store
different information in a user model, besides a representation
of the user’s knowledge. Most AHS also keep track of which
pages (nodes) a user has read. In AHAM pages also corre-
spond to concepts, so we can store knowledge and browsing
history informationas attributesof a concept in the user model.

Definition 7 An AHS associates a number of (system or au-
thor defined) user-model attributesto each concept compo-
nent of the domain model. For each user the AHS maintains a
table (a relation in database terminology) in which for each
concept component the attribute values for that concept are
stored. The structure of this table is the user model scheme.
The table for a specific user is a user model instance. If there
is no confusion between scheme and instance we just use the
term user model. The “first” attribute of the user model is al-
ways the concept uid.

AHAM does not require the presence of specific attributes in
the user model (other than the concept uid). However, almost
all AHS store at least the following two attributes:

� Theknowledge value (orvalue for short) indicates how much
the user knows about the concept. The concept-value pairs to-
gether form anoverlay model, which represents the “knowl-
edge” of the user. Some AHS use a “Boolean user model” [9,
10], meaning that for each concept the user either knows or
does not know the concept. Other AHS use either a small
set of knowledge values [5, 6], like “not known”, “learned”,
“well learned” and “well known”, or even a large set, such as
a percentage or a (real) value between 0 and 1 [22].
� The read attribute indicates whether the user read some-
thing (a fragment, a page or a set of pages) about the concept.
In Web-based systems theread attribute is used to generate a
different presentation for anchors of links to pages that were
read before than for links to previously unread pages. (By de-
fault the difference is a purple vs. blue color for the anchor
text or image border.) Theread attribute may have Boolean
values in some AHS while it may be a list of access times in
other AHS.

A less common attribute would beready-to-read, which in-
dicates whether the user is ready to read about this concept.
(This means for instance that enough prerequisite knowledge
has been acquired.) Figure 2 shows an example of a user model
(instance). The example assumes that WWW1 and WWW2

are subconcepts of the composite WWW. By learning every-
thing about WWW1 (but still nothingabout WWW2) the com-
posite WWW already becomes “learned”. It is thus possi-
ble to already have learned something about a concept while
“read” is still false. It is even possible that there is no page
for the concept WWW, and that it thus can only be learned
by reading about subconcepts.

uid (name) knowledge value read ready-to-read
intro well learned true true
Xanadu learned true true
KMS not known false true
WWW1 well known true true
WWW2 not known false true
WWW learned false false

Figure 2: Example user model instance

The “table” representation of a user model in AHAM is only
a conceptual representation. Actual implementations of AHS
may implement this structure in a different way. The AHA
system [9, 10] for instance uses a logfile (separate for every
user) in which each time is logged at which a user requests
a page, and each time when a user leaves the page. Also, an
AHS may implement just one user model table for all users
together, by adding a “user-id” attribute.

While most AHS to date provide a fixed set of attributes, fu-
ture AHS may offer the possibilityfor authors to “invent” new



attributes. For the AHAM model this makes no difference. In
the sequel we shall use the notationC.attr as a convenient way
to denote the value for the attributeattr for the concept with
uid C and for the “current” user. WhenXanadu.read is true,
it means the user has read the page about concept Xanadu.

In AHAM the basis for adaptive functionality can be found
in theteaching model, which combines information from the
domain model and theuser model in rules that determine how
information is to be presented.

Definition 8 A generic pedagogical ruleis a tuple <R, PH,
PR>where R is a “triggered” rule, PHis the “phase” for the
execution of the rule and PR is a Boolean “propagate” field
which indicates whether this rule may triggerother rules. The
syntax of the permissible rules depends on the AHS. It will
normally be much simpler than the syntax of the examples be-
low. A rule uses and possibly changes variables which denote
concept uid’s, attributes, anchors, parts of presentation spec-
ifications and user-model attributes for concepts and concept
relationships. The “phase” of a rule can have the value preor
post. The phase preis executed before and during the gener-
ation of a page (or pages), while postis executed afterwards.

Definition 9 A specific pedagogical ruleis a tuple <R, SC,
PH, PR> where R is a “triggered” rule, SC is a set of con-
cept components used in the rule, PH is the “phase” and PR
is the Boolean “propagate” field. The rule uses and sets user-
model attributes and “predicates” over the specific concepts
of SC.

An AHS may have predefined or implicit generic pedagogical
rules. If these rules suffice there is no need for a language in
which authors can write new rules. Author defined rules take
precedence over predefined rules. Specific rules take prece-
dence over generic rules, and are thus used to define excep-
tions to generic rules.

The reason for having two execution phases is that one may
wish to do first some adaptation based on the “current” state
of the user model (pre) and to then update the user model to a
new state after generating the presentation of the page(s) that
result from following a link (post).

Definition 10 The teaching modelof an AHS is the set of (generic
and specific) pedagogical rules.

We do not formally specify a language for expressing peda-
gogical rules. We only give a few examples of typical generic
and specific rules, using an arbitrarily chosen syntax. For the
application of these rules we assume that the AHS is display-
ing one or more pages, and that the user “clicks” on a link an-
chor. This activates thefollowLink operation from the Dexter

model’s run-time layer, which in turn results in a call to are-
solver function for the specifier corresponding to the link an-
chor (on the given page). In AHAM the resolvermust trans-
late the given specifier to the uid of a composite concept com-
ponent thatcorresponds to a page, or to a set of such uid’s. (It
may require several recursive calls to the resolver to go down
from a high-level abstract concept down to the page level.)
Which page(s) is or are selected depends on the domain model
(that defines the hierarchy and structure of composites as well
as concept relationships that may indicate a preferred read-
ing order) and on the user model (that states what the user’s
knowledge about differentconcepts is). For each selected page
anaccessor function is called, according to the Dexter model,
which returns the (page) concept component that corresponds
to the resolved uid. The pedagogical rules in AHAM are “trig-
gered” through thisaccessor function.

Example 1 The following rule expresses that when a page is
accessed the readuser-model attribute for the corresponding
concept is set to true in the postphase:

< access(C)) C:read := true ; post ; true >

The rule also says that it will trigger other rules thathave read
on their lefthand side.

Example 2 The following rule expresses that when a page is
“ready-to-read” and it is accessed, the knowledge value of
the corresponding concept becomes “well learned” in the pre
phase. This is somewhat like the behavior of Interbook [6].

< access(C) and C:ready-to-read = true )
C:knowledge-value := well learned ; pre ; true >

In this example the phase was chosen to bepre because this is
the behavior of Interbook and many other AHS. This choice
is counterintuitive but illustrates a shortcoming of many AHS
(but for which there is no easy solution): the presentation of
a page is adapted to the knowledge the user will haveafter
reading the page. This behavior is motivated by the need to
present as “relevant” the anchors for links to pages that only
become relevant after reading the page. By having two phases
in the AHAM model it becomes possible to describe the be-
havior of future AHS that will register the new knowledgeaf-
ter the page has been generated and presented.

Example 3 The following rule illustrates how a prerequisite
relationship works: this generic rule states that a prerequisite
relationship between two concepts is satisfied when the pre-
requisite concept is at least “well learned”. For simplicity we
assume that when CR is a concept relationship, the uid of the
i-th specifier is CR.ss[i].uid, the knowledge-value of the con-
cept in the user model is CR.ss[i].uid.knowledge-value, the
relationship type is CR.cinfo.type, the direction of the i-th spec-
ifier is represented CR.cinfo.dir[i], etc. We also assume that



knowledge values can be compared using > and �, where
higher values mean more knowledge. (A completely correct
syntax would be more complicated because of the complex
nature of relationshipsand specifiers in the Dexter model, and
thus also in AHAM, and because we would need to discrimi-
nate between attributes of concepts in the domain model and
in the user model.)

< CR.cinfo.type = prerequisite and CR.cinfo.dir[1] = FROM
and CR.cinfo.dir[2] = TO and CR.ss.length = 2 and

CR.ss[1]:uid.knowledge-value�
CR.cinfo.required-knowledge[1]

) CR.ss[2]:uid.ready-to-read := true ; pre ; true >

Note that this rule only “works” if it is triggered. Example 2
shows that from an “access” event a change to the knowl-
edge is generated which propagates as a new event. So if the
knowledge value of CR.ss[1] is set through an “access” event,
that triggers the rule given in this example.

We now turn to examples that deal with the presentation as-
pect of an AHS. In the Dexter model, and also in AHAM,
the link between the storage layer and the run-time layer is
formed bypresentation specifications, which are not described
in detail. We give a few examples of how pedagogical rules
are used to generate (parts of) presentation specifications.

Example 4 For atomic concepts (i. e. fragments) we assume
the presentation specification is a two-valued(almost Boolean)
field, which is either showor hide. When a page is being ac-
cessed, the followingrule sets the visibility for fragments that
belong to a “page” concept, depending on their ready-to-read
state.

< access(C) and F 2 C.children and
F.ready-to-read = true )

F.pres := show ; pre ; false >

Here we again simplified things, by assuming that we can treat
C.children as if it were a set, whereas it really is a sequence.
A similar but complementary rule to set the visibility to hide
is straightforward. This presentation specification is used by
the adaptive engine of the AHS to include only those frag-
ments in a page that are ready-to-read.

Note that the update to the presentation specification is not
propagated: the presentation specification is passed on to the
implementation-specific part of the AHS that is not part of the
AHAM model. (Thus, a presentation specification isset by a
pedagogical rule, but notread by other rules.) However, there
may be other rules that are triggered by the “access” event, for
instance a rule executed in thepost phase that will set theread
attribute of the fragments totrue.

Example 5 The following rules set the presentation specifi-
cation of a specifier that denotes a link (source) anchor de-
pending on whether the destination of the link is considered

relevant (ready-to-read) and whether the destinationhas been
read before. For simplicity we consider a link with just one
source and one destination.

< CR.type = link and CR.cinfo.dir[1] = FROM and
CR.cinfo.dir[2] = TO and CR.ss[2].uid.ready-to-read = true

and CR.ss[2].uid.read = false )
CR.ss[1]:pres := GOOD ; pre ; false >

< CR.type = link and CR.cinfo.dir[1] = FROM and
CR.cinfo.dir[2] = TO and CR.ss[2].uid.ready-to-read = true

and CR.ss[2].uid.read = true )
CR.ss[1]:pres := NEUTRAL ; pre ; false >

< CR.type = link and CR.cinfo.dir[1] = FROM and
CR.cinfo.dir[2] = TO and CR.ss[2].uid.ready-to-read = false

) CR.ss[1]:pres := BAD ; pre ; false >

These rules say that links to previously unread but “ready-
to-read” pages are “GOOD”, links to previously read and
“ready-to-read” pages are “NEUTRAL” and links to pages
that are not “ready-to-read” are “BAD”. In the AHA system [9,
10] this results in the link anchors being colored blue, purple
or black respectively. In ELM-ART [5] and Interbook [6] the
links would be annotated with a green, yellow or red ball.

The above examples illustrate how theadaptive engine of an
AHS can use pedagogical rules to generate presentation spec-
ifications. In the examples this generation is very simple (set-
ting the visibility of a fragment or the class of a link anchor).
In general however the adaptive engine may have more diffi-
cult tasks, e. g. when the presentation of a page requires frag-
ments to not only be selected but also sorted. Also, the engine
is responsible for updating the user model after each event.
The tasks performed by the adaptive engine when a user “fol-
lows a link” to a specifierS can be summarized as follows:

1. First the engine retrieves the stored user model. (The run-
time layer which we do not elaborate in this paper ensures
that through the “session” concept the identity of the user is
known.) All stored attributes of all concepts are retrieved.

2. The other attributes that are used in pedagogical rules but that
are not in the user model are initialized to a default value. Hav-
ing default values reduces the number of rules that are required.
For instance, ifready-to-read is not in the user-model but is
used in rules, we can set theready-to-read attribute for all
concepts totrue by default, and then only have rules to set
it to false when needed.

3. The engine resolves the specifierS to a page conceptC by
applying pedagogical rules that are aimed at determining a
“desired” page for specifierS, depending on the user model.
(The rules use prerequisite, inhibitor and other similar con-
cept relationships.)



4. The engine starts executing rules, starting with access(C) as
the trigger. All triggered rules from the “pre” phase are exe-
cuted. A page (or set of pages) is built, using the presentation
specifications. (Fragments are selected and possibly sorted,
for each page to be presented.)

5. The engine then does whatever is necessary to actually present
the page(s). This action crosses the boundary between the
“storage layer / presentation specifications” and the run-time
layer. In a Web-based system this would also be the boundary
between server and browser. The adaptive engine generates
an HTML page and sends it to the browser.

6. Next all triggered rules from the “post” phase are executed.
(These rules cannot change the presentation specification any-
more in a meaningful way, because the presentation is already
generated and handed over to the run-time layer.)

7. The updated values for attributes from the user model are saved
in that user model.

An adaptive engine, as described above, can easily operate
as a CGI-script or a servlet in a Web-based adaptive hyper-
media application. In fact, most recent AHS, including Inter-
book [6] and AHA [9, 10], are based on CGI-scriptsor servlets.

The fact that following a link may result in multiple destina-
tions is convenient for modeling AHS which divide the dis-
play (or browser window) into different parts, each showing
different aspects of the adaptive hypermedia application. A
“kiosk” system and a course text realized in AHA [10] for
instance use an adaptivetable of contents frame and anin-
formation frame. (See http://wwwis.win.tue.nl/IShype/ and
http://wwwis.win.tue.nl/2M350/.) Applications of Interbook
[6] also include frames that show concepts that are learned or
that are still to be learned. Each time a link is followed all
frames need to be updated. While the node (page) that is dis-
played in a frame may remain the same, the presentation of
that node may change, because different fragments may be
(conditionally) included, and because link anchors may need
to be annotated differently, hidden or maybe even removed.

By now we have defined all the components that make up an
adaptive hypermedia application:

Definition 11 An adaptive hypermedia applicationis a 4-tuple
<DM, UM, TM, AE> where DM is a domain model, UM is
a user model, TM is a teaching model, and AE is an adaptive
engine.

COMMUNICATION BETWEEN ADAPTIVE HYPERMEDIA
SYSTEMS
The Dexter model assumes that all “history information” is
limited to a single browsing or authoringsession. It even states
that when closing a sessionby default, pending changes to in-
stantiationsare not saved [16]. In AHAM we explicitlymodel

a permanent user model, thus taking into account that a user’s
interaction with a hypermedia information source may span
several sessions. The next step is of course to extend the user
model to include a representation of evolution of the user’s
state of mind throughouthis or her interaction withmany adap-
tive hypermedia applications. The exchange of user models
is one of the areas for which the IEEE Learning Technology
Standards Committee (LTSC)(P1484) is trying to come up with
a standard for.

Modeling the exchange of user model information in AHAM
is as simple as adding two events, in addition to the “access”
event:

� An AHS may offer an externally accessible function:

getValue(user, auth, cuid, attr)

where “user” identifies a user, “auth” is a system-dependent
authorization, “cuid” is a unique concept identifier, and “attr”
is an attribute of the user model. The function returns a value
(of the appropriate type) for that attribute. The caller of the
function needs to know which data type to expect.
Here it is convenient that the Dexter model, and thus also AHAM,
requires that the unique identifiers for all components are glob-
ally unique, not justwithina hypermedia applicationbut unique
within the entire universe of discourse.
� An AHS may offer an externally accessible procedure:

setValue(user, auth, cuid, attr, value)

where “user” identifies a user, “auth” is a system-dependent
authorization, “cuid” is a unique concept identifier, “attr” is
an attribute of the user model and “value” is the new value
for this attribute. This procedure (or void function) updates
the user model.

Authorization is needed for obvious reasons: not every exter-
nal application can be allowed to read and/or update arbitrary
user models.

It may seem that it is very inconvenient to have these func-
tions take or return values of specific data types which may
be different in every AHS. It is possible to translate many (but
not nearly all) data types to a “standard” one, like all real (float-
ing point) numbers between 0 and 1. However, the biggest
problem in the communication between systems is not the tech-
nical data conversion but the semantic conversion. In order
for an application to use theknowledge-value for a conceptC
which is imported from a different AHS, (the author of) that
application must know what the conceptC means in terms of
its own concepts, and it must know what theknowledge-value
means. If a system that uses values between 0 and 1 wishes to
retrieve a knowledge-value from another system that returns
well learned, the system needs to be able to interpret which
of its own values has the same meaning aswell learned in the
other system. Even when two systems use knowledge values
between 0 and 1 the identity may not be the most appropriate
conversion of knowledge values.



An immediate applicationof the functions “getValue” and “set-
Value” is in the communication with semi-external applica-
tions like an evaluation tool that uses multiple-choice tests, or
an initial questionnaire that is used to initialize a user model
and to set preferences. Apart from a user’s knowledge about
concepts, many AHS also want to store a user’s preferences,
like a preferred media type (text, audio, video), a desired ver-
bosity level (terse, medium, verbose), linkannotation type (hid-
ing, annotation, and if so, using which color scheme), etc. The
system may also want to store other background information
about the user, like experience in the use of adaptive hyperme-
dia systems, possible disabilities, age, education, etc. While
all this information is semantically very different from “knowl-
edge about concepts” it can be represented and implemented
as if it were just “knowledge about concepts”. AHAM is thus
able to model preferences, background, and other user aspects
one may wish to include in a user model.

FUTURE WORK ON AHAM
The descriptionof AHAM in this paper focusses on browsing.
The Dexter model includes functions in the storage layer as
well as the run-time layer for creating, modifying and delet-
ing components. Our main motivation for designing AHAM
was to develop a framework to aid the development of adap-
tive hypermedia systems in which authoring would be much
easier than in existing systems like Interbook [6] and AHA [9,
10].

The main hurdle in facilitating authoring is the clear separa-
tion of the design of theconcept space, theactual information
content, the link structure at a conceptual level, and thede-
pendencies between concepts (likeprerequisites and inhibitors).
This design aspect of AHAM has been realized, and leads us
to believe that adaptive hypermedia authoring tools that main-
tain this separation of concerns will be much easier to use than
any of the tools that exist today.

What remains to be done is to include functions for actually
creating (atomic and composite) concepts and concept rela-
tionships, for modifying and for deleting them in the defini-
tion of the AHAM model. This will be done in a forthcoming
extended paper that will also include a more formal definition
of AHAM, using the specification language Z that was used
to formally define the Dexter model [15].

CONCLUSIONS
In this paper we have introduced a reference model for adap-
tive hypermedia applications. This model, called AHAM, was
explained in terms of the well-known Dexter model. The ar-
chitecture of AHAM extends Dexter by dividing thestorage
layer into three parts: adomain model, a user model and a
teaching model.

We have focussed on the description ofbrowsing in an adap-
tive hypermedia application. The introduction of a perma-
nent and continuously updated user model enabled us to in-
clude a complete navigation history in the model (unlike in

Dexter where records are only kept within a session), and to
use that history to generate attributes of presentation specifi-
cations that result in a user-adapted presentation of both the
information content and the links (or link anchors) of the ap-
plication. Future work includes the description ofauthoring
in the model.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers who, through
their remarks and questions, have helped us to generalize some
definitions, and who pointed out some issues that needed ad-
ditional clarifications.

REFERENCES
1. I. Beaumont. User modeling in the interactive anatomy

tutoring system ANATOM-TUTOR. User Model-
ing and User-Adapted Interaction, Vol. 4, pp. 21–45,
Kluwer academic publishers, 1994.

2. C. Boyle and A. O. Encarnacion. MetaDoc: an adap-
tive hypertext reading system. User Modeling and User-
Adapted Interaction, Vol. 4, pp. 1–19, Kluwer academic
publishers, 1994.

3. P. Brusilovsky. Methods and Techniques of Adaptive
Hypermedia. User Modeling and User-Adapted Inter-
action, Vol. 6, pp. 87–129, Kluwer academic publishers,
1996.

4. P. Brusilovsky and L. Pesin. ISIS-Tutor: An adap-
tive hypertext learning environment. JCKBSE’94,
Japanese-CIS Symposium on knowledge-based soft-
ware engineering, Pereslavl-Zalesski, Russia, pp. 83–
87, 1994.

5. P. Brusilovsky, E. Schwarz and G. Weber. ELM-ART:
An intelligent tutoring system on World Wide Web.
Third International Conference on Intelligent Tutoring
Systems, ITS-96, Montreal, LNCS Vol. 1086, pp. 261–
269, 1996.

6. P. Brusilovsky, E. Schwarz and G. Weber. A Tool for
Developing Adaptive Electronic Textbooks on WWW.
Proc. WebNet’96 Conference, pp. 64–69, San Fran-
cisco, 1996.

7. L. Calvi and P. De Bra. Improving the Usability
of Hypertext Courseware through Adaptive Linking.
Proc. 8th ACM Conference on Hypertext, Southamp-
ton, pp. 224–225, 1997.

8. L. Calvi and P. De Bra. Using dynamic hypertext to cre-
ate multi-purposetextbooks. Proc. ED-MEDIA’97, Cal-
gary, pp. 130–135, 1997.

9. P. De Bra and L. Calvi. Creating adaptive hyperdocu-
ments for and on the Web. Proc. WebNet’97 Confer-
ence, Toronto, pp. 149–155, 1997.



10. P. De Bra and L. Calvi. Towards a Generic Adaptive Hy-
permedia System. Proc. Second Workshop on Adaptive
Hypertext and Hypermedia, Pittsburgh, pp. 5–11, 1998.

11. P. De Bra, G. J. Houben, Y. Kornatzky. An Extensible
Data Model for Hyperdocuments. Proc. 4th ACM Con-
ference on Hypertext, Milan, pp. 222–231, 1992.

12. R. Furuta and P. D. Stotts. The Trellis Hypertext Refer-
ence Model. InProc. NIST Hypertext Standardization
Workshop, pp. 83–93, 1990.

13. F. Garzotto, P. Paolini, D. Schwabe. HDM - A
model-based approach to hypermedia application de-
sign. ACM Transactions on Information Systems, 11:1,
pp. 1–23, 1993.

14. K. Grønbæk, R. Trigg. Design issues for a Dexter-based
hypermedia system. Communications of the ACM,
Vol. 37, nr. 2, pp. 40–49, 1994.

15. F. Halasz and M. Schwartz. The Dexter Reference
Model. InProc. NIST Hypertext Standardization Work-
shop, pp. 95–133, 1990.

16. F. Halasz and M. Schwartz. The Dexter Hypertext Ref-
erence Model. Communications of the ACM, Vol. 37,
nr. 2, pp. 30–39, 1994.

17. J. Hothi and W. Hall. An Evaluation of Adapted
Hypermedia Techniques Using Static User Modelling.
Proc. Second Workshop on Adaptive Hypertext and Hy-
permedia, Pittsburgh, pp. 45–50, 1998.

18. D. Lange. A Formal Model of Hypertext. InProc.
NIST Hypertext Standardization Workshop, pp. 145–
166, 1990.

19. A. Kobsa, D. Müller and A. Nill. KN-AHS: An adaptive
hypertext client of the user modeling system BGP-MS.
Proc. Fourth International Conference on User Model-
ing, Hyannis, MA, pp. 31–36, 1994.

20. N. Mathé and J. Chen. A user-centered approach to
adaptive hypertext based on an information relevance
model. Proc. Fourth International Conference on User
Modeling, Hyannis, MA, pp. 107–114, 1994.

21. M. Milosavljevic and J. Oberlander. Dynamic Hyper-
text Catalogues: Helping Users to Help Themselves.
Proc. Ninth ACM Conference on Hypertext and Hyper-
media, Pittsburgh, PA, pp. 123–131.

22. D. Pilar da Silva. Concepts and documents for adap-
tive educational hypermedia: a model and a prototype.
Proc. Second Workshop on Adaptive Hypertext and Hy-
permedia, Pittsburgh, pp. 33–40, 1998.

23. D. Schwabe, G. Rossi. The Object-Oriented Hyper-
media Design Model. Communications of the ACM,
Vol. 38, nr. 8, pp. 45–46, 1995.


